From Self-supervised learning to LLMs for Timeseries: Adopting "GPT" paradigm for modelling behaviours at scale

Flora Salim

Cisco Chair of Digital Transport & Al Professor, School of Computer Science and Engineering

Deputy Director (Engagement), UNSW AI Institute UNSW Sydney

Co-Lead; Machines Program; Mobilities Focus Area, ARC Centre of Excellence for Automated Decision Making and Society (ADM+S)

Collective and Robust Ubiquitous Intelligence (CRUISE) lab

Prof Flora Salim Cisco Chair of Digital Transport Deputy Director, *UNSW AI Institute* Co-Lead, Mobility and Transport, Machines Program, *ADM+S Centre*

Members:

- 3 Faculty members
- 3+ postdocs
- 9+ PhD students
- 7+ Masters and Honours students
- 1 U.S. Fulbright Professor
- 4+ Visiting Researchers

Research Capabilities

- Machine Learning; Unsupervised Learning; Deep Learning; Adversarial Learning
- Time-series, Spatio-temporal Data
- Analytics and Forecasting
- Prediction + Optimization
- Natural Language Processing
- Mobility data science
- On-device AI; Edge and federated learning
- Behaviour modelling
- Mobile and wearable sensing and AI
- Personalization and profiling
- Activity recognition, emotion recognition
- Recommender systems
- Responsible, Ethical, Equitable AI (Fairness, Debiasing, Transparency, Explainability)

Application Domains

- Transport and Mobility
- Energy, Climate, and Sustainability
- Health and wellbeing Al
- Pandemic, Emergency Preparedness

Current Projects

- Understanding Bias in AI Models for the Prediction of Infectious Disease Spread, CSIRO and NSF.
- Mobility Question Answering (Q&A) for Natural-Language-based Spatio-Temporal Forecasting, Cisco Research USA.
- NSW Clean Technology Research Development & Commercialisation Infrastructure Grant, CSIRO, NSW Gov
- Rail Passenger Ride Comfort Modelling using In-vehicle IoT Sensor Data: A Feasibility Assessment, TfNSW, Sydney Trains, Cisco
- IoT Data Security and Assurance Framework for Intelligent Transport, CyberSecurity CRC & Cisco
- Towards AI on the edge: Developing data-efficient machine learning models for multimodal sensing devices and IoT, Data61 NextGen Program
- ARC Centre of Excellence for Automated Decision Making and Society (ADM+S), 2020-2027, Co-Lead of Transport & Mobility Focus Area, Co-Lead of Machines Program.

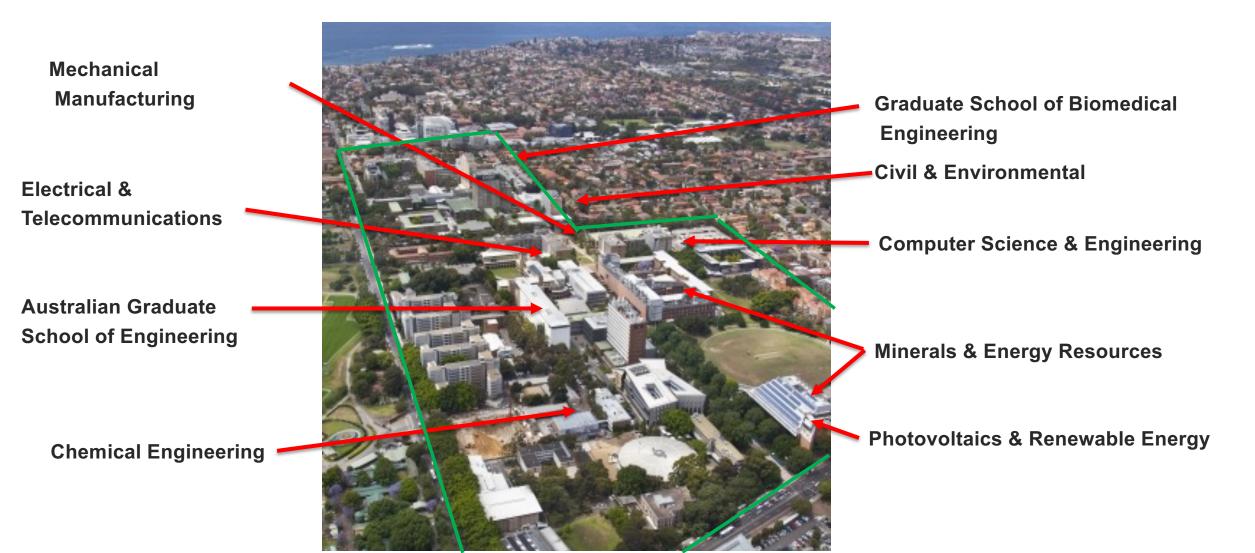
National Industry Innovation Network

Research Chairs

 $\langle T \rangle$

Skill & Talent Development

Future Investments

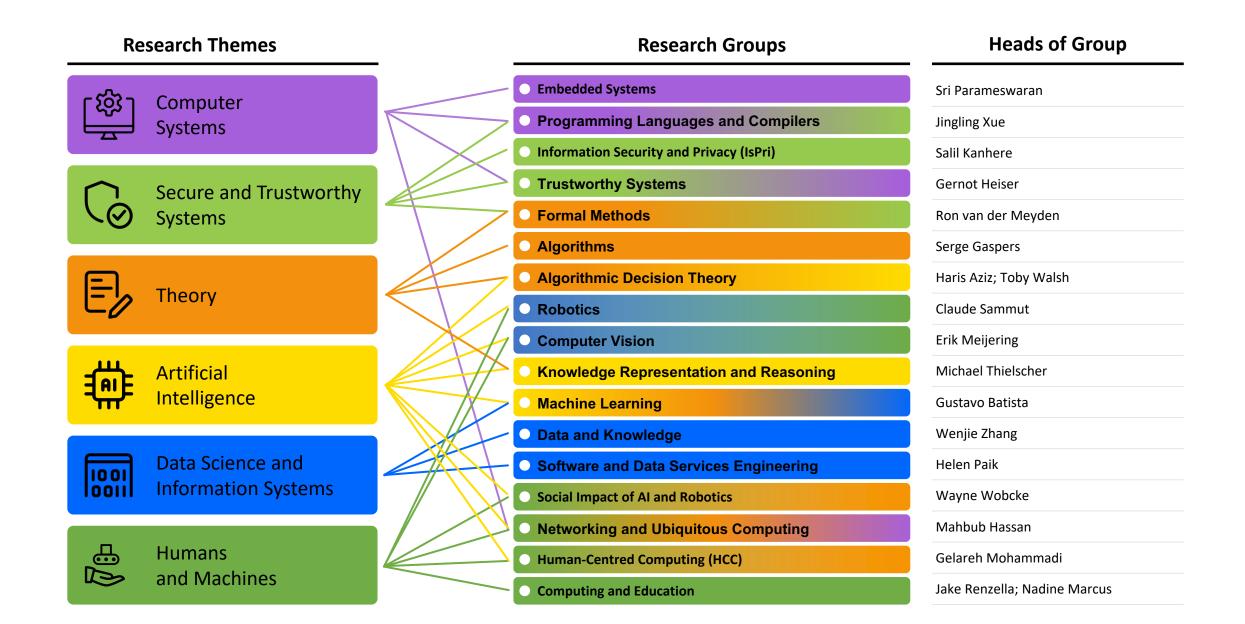


Innovation Central

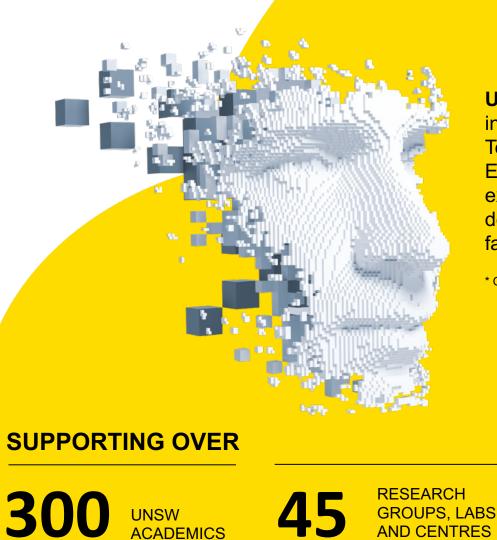
Partnerships

on al Specialised Centres

UNSW Engineering Faculty Profile


Innovation Central Sydney (ICS) is a part of UNSW Faculty of Engineering

Research in the School of Computer Science and Engineering


ARC Centre of Excellence in Automated Decision Making and Society (ADM+S) **AUTOMATED DECISION-MAKING** At a Glance THAT BENEFITS ALL **AUSTRALIANS**

Goal

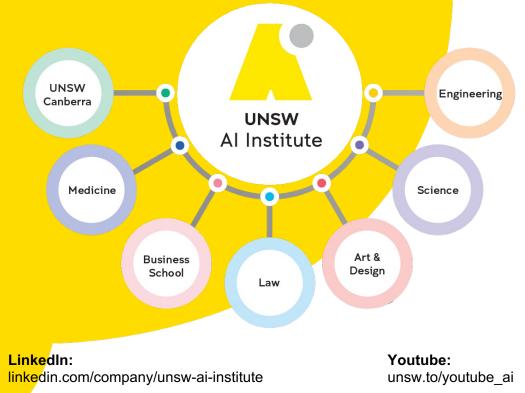
The ARC Centre of Excellence for Automated Decision-Making and Society brings together universities, industry, government and the community to support the development of responsible, ethical and inclusive automated decision-making.

- 9 Australian Universities
- 21 Partner Organisations
- 79 Collaborating Organisations
- 247 Centre Members:
 - Social Scientists
 - Historians
 - Humanities
 - Data Scientists
 - Mathematicians
 - **Computer Scientists**
 - Law and Regulation
 - Fconomists

UNSW Al Institute

Twitter:

@unsw ai


Website:

UNSW.ai

UNSW AI Institute is the flagship research institute of UNSW (which is one of the World's Top 100 Universities and 23rd globally for Engineering and Technology*). Its researchers' extensive track record in AI research and development capabilities across several faculties is well recognised globally.

* QS World University Rankings by Subject 2022

AND CENTRES

My research

Learning **Complex Behaviours** using Heterogenous Sensor Data *in the Wild*

Proliferation of IoT in many domains

Manufacturing

Transport

Aerospace

Consumer Electronics

Smart Energy

5 0

Agriculture

Smart City

Building Management

Retail

Security

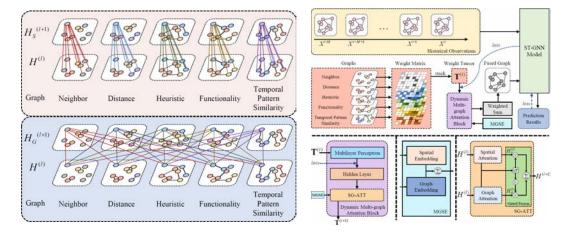
Autonomous Car

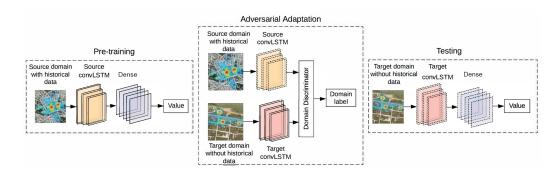
Health Care

Mobility Data & Al at the Core

Mokbel et al, 2023, Towards Mobility Data Science (Vision paper) https://arxiv.org/abs/2307.05717

Multi-Scale Behaviour intelligence


Situational Awareness in Dynamic and Challenging Contexts


Representation learning for situational awareness

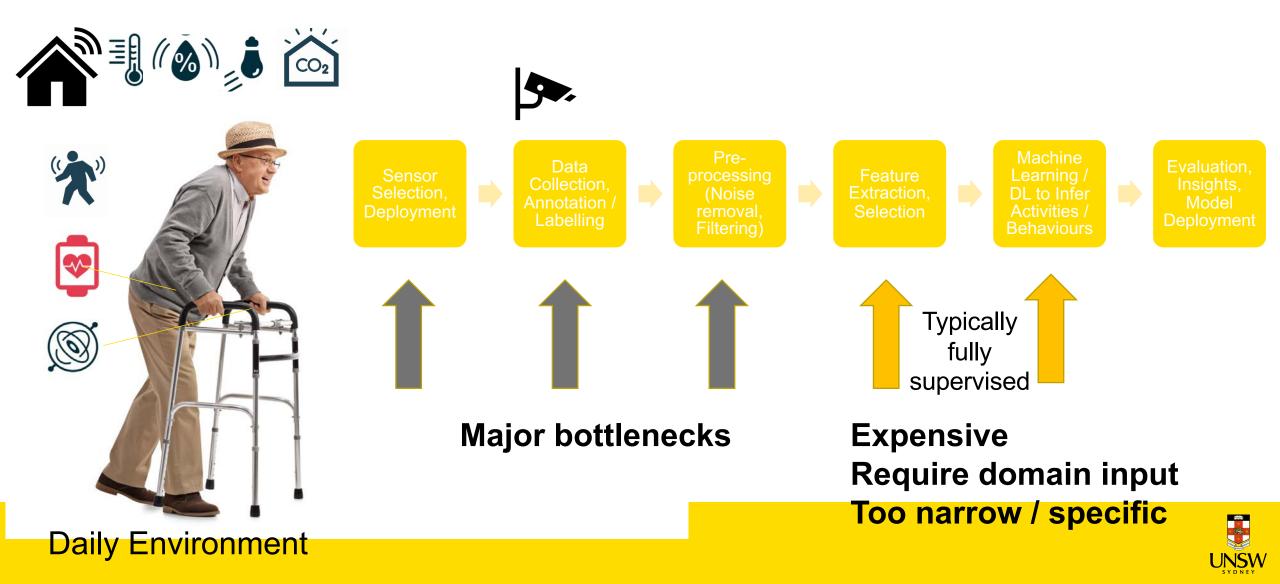
- Handling multi-source time-series, irregularity, unequal-length sequences, inconsistency
- Adaptive to unprecedented volatility, capability to handle zero shot, unseen, adversarial events
- Aware of the dynamic interactions among heterogeneous spatio-temporal data
- Multi-resolution: individual-, group- or urban-level

Applications:

- Traffic and mobility forecasting
- Smart City and Sustainability: air pollution, energy, urban health
- Defence and Intelligence

Patterns of Dynamic Behaviours

Physiology, health, and mental health


Mobility Behaviour (individual, group, and city-scale)

Urban-Scale Consumption Behaviour (buildings, retail, energy)

Typical pipeline for behaviour recognition

A wide variety of inference tasks

- Physical activity recognition
- Step counting
- Mobility / transport usage prediction
- Emotion / stress recognition
- Sleep analytics
- Concentration inference
- Productivity and task inference
- Anomaly detection
- Criminal, safe/unsafe behaviour
- Brain activity inference
- Sport/ muscle activity inference
- Information needs inference
- App usage prediction
- Health condition inference
- Psychometric inference
- Social distancing, contact tracing

Digital phenotyping

Multi-dimensional data collection and user/ group profiling:

- Behaviour engagement
- Emotion and mental health
- Concentration and stress
- Indoor and thermal comfort
- Cyber / online and physical activities
- Mobility behaviour (individual, groups, and at precinct and city scale)

(a) Empatica E4 wristbands

(b) Netatmo indoor weather station (c) Classroom for

Devices	Collected data	Sampling rate	Time frame
	3-axis acceleration	32 Hz	
Empatica E4 wristband	Skin temperature	4 Hz	4
	Electrodermal activity	4 Hz	4 weeks
	Blood volume pulse	64 Hz	1
Netatmo indoor weather station	Humidity, temperature, noise level, CO2	5 minutes	5.5 months
DigiTech XC0422 outdoor weather station	Temperature, humidity, barometric pressure, wind speed, wind direction, solar radiation, UV, rainfall	5 minutes	5.5 months
PHILIO Z-wave (attached to air-conditioning vents)	Humidity, temperature	5 minutes	5.5 months

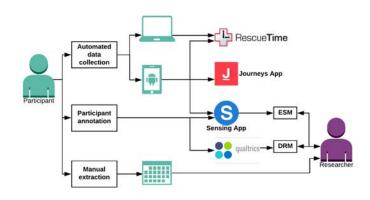


Figure 1: Overview of logging apps and their instruments.

Gao, N., Marschall, M., Burry, J., Watkins, S. and Salim, F.D., 2022. Understanding occupants' behaviour, engagement, emotion, and comfort indoors with heterogeneous sensors and wearables. *Scientific Data*, *9*(1).
 Liono, J., Trippas, J.R., Spina, D., Rahaman, M.S., Ren, Y., Salim, F.D., Sanderson, M., Scholer, F. and White, R.W., 2019. Building a benchmark for task progress in digital assistants. *Proceedings of WSDM*, *19*.

[3] Rahaman, M.S., Liono, J., Ren, Y., Chan, J., Kudo, S., Rawling, T. and Salim, F.D., 2020. An ambient–physical system to infer concentration in open-plan workplace. *IEEE Internet of Things Journal*, 7(12), pp.11576-11586.

A multimodal sensor dataset: occupants' behaviour, engagement, emotion, and comfort indoors

Gao N, Marshall M, Burry J, Watkins S, Salim FD. Understanding occupants' behaviour, engagement, emotion, and comfort indoors with heterogeneous sensors and wearables.

(Nature Scientific Data)

The research is funded by ARC linkage program (No. LP150100246) 'Swarming: micro-flight data capture and analysis in architectural design' by Prof J Burry, Prof, S Watkins, A/Prof F Salim, RMIT University. Industry Partner of this research is Aurecon.

Dataset Introduction

In-Gauge Dataset

a 5-month longitudinal field study across 17 classrooms

En-Gage Dataset

4-week cross-sectional study with 29 participants

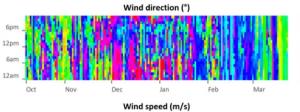
Devices	Collected data	Sampling rate	Time frame	
	3-axis acceleration	32 Hz		
Empatica E4 wristhand	Skin temperature	4 Hz	4 weeks	
Empatica E4 wristband	Electrodermal activity	4 Hz		
	Blood volume pulse	64 Hz		
Netamo indoor weather station	Humidity, temperature, noise level, CO ₂	5 minutes	5.5 months	
DigiTech XC0422 outdoor weather station	Temperature, humidity, barometric pressure, wind speed, wind direction, solar radiation, UV, rainfall	5 minutes	5.5 months	
PHILIO Z-wave (attached to air-conditioning vents)	Humidity, temperature	5 minutes	5.5 months	

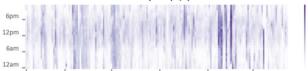
Indoor station

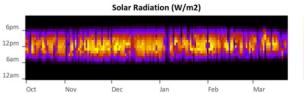
Weather station

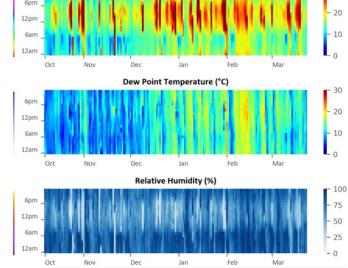
Window/door sensor

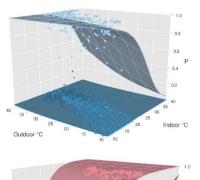
nsor AC sensor

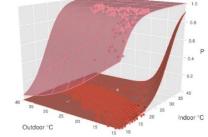

Wearables


Daily Survey


In-Gauge Dataset


Oct




Feb

Dry Bulb Temperature (°C)

	Units	Range	Accuracy	Resolution
Dry Bulb Temperature	°C	-40 °C – 60 °C	±1 %	0.1 °C
Dew Point Temperature	°C	-40 °C – 60 °C	±1 %	0.1 °C
Relative Humidity	%	1 % - 99 %	±5 %	1%
Wind Speed	m/s	0 m/s - 50 m/s	$\pm 1 \text{ m/s} (<5 \text{ m/s})$ $\pm 10 \% (>= 5 \text{ m/s})$	0.1 m/s
Gust Speed	m/s	0 m/s - 50 m/s	$\pm 1 \text{ m/s} (<5 \text{ m/s})$ $\pm 10 \% (>= 5 \text{ m/s})$	0.1 m/s
Wind Direction	0	0 ° - 360 °	±22.5 °	22.5 °
Rainfall	mm	0 mm - 9999 mm	±10 %	0.3 mm (<1000 mm) 1 mm (>= 1000 mm)
Light	Lux	0k Lux - 400k Lux	±15 %	0.1 Lux
Solar Radiation	W/m ²	-	-	-

	Units	Range	Accuracy	Resolution
Dry Bulb Temperature	°C	0 °C to 50 °C	± 0,3 °C	0.1 °C
Relative Humidity	%	0 to 100 %	± 3 %	1 %
<i>CO</i> ₂	ppm	0 to 5,000 ppm	±50 ppm (<1,000 ppm) ±5 % (>= 1,000 ppm)	1 ppm
Noise	dB	35 dB to 120 dB	-	1 dB

Netamo Home Coach Logging Specifications

DigiTech XC0422 logging specifications

En-Gage Dataset

Group	Room	Participant						120 Ē 110	Lat	(STI 12		
	R1	P13, P14, I	P15, P1	6, P17, I	P18, P19	, P20, P21	, P22		and the state of the	0 Activity		
Form	R2	P8, P9, P1	0, P11,	P12, P23	3			# 80	an management	www.www		a starting and the
	R3	P1, P2, P3,	, P4, P5	5, P6, P7					A line of the part of the discussion of the first section of the s			Am
	R 1	P2, P4, P5, P10, P11, P14, P18						09:00 10:00 11:00	12:00 13:00 14:00	15:00 09:00 10	0:00 11:00 12:00 13:0	00 14:00 15:00
Math	R2	P3, P6, P7, P8, P9, P15, P16, P17, P20					(a) Heart Rate		(b) Electrodermal Activ	vity		
	R3	P1, P12, P	13, P19	, P21, P2	22, P23			36 - J		200 - 65 4	a.ch	8
	R1	P1, P2, P4,	, P7, P1	0, P13, I	P15, P17	, P19, P20), P21, P22, P23	- 34 - 10 32 -		66 90/ 150	an that	rt, line
T	R2	P9, P14						30			Allow the particular light of the	A MAR DANA
Language	R3	P5, P6, P1	1, P12,	P16				28-		So S	and a state of the	and hearing the operation of
	R4	P3, P8 P18	3					26 09:00 10:00 11:00	12:00 13:00 14:00	0 15:00 09:00 10:	00 11:00 12:00 13:00	0 14:00 15:00
								(c) 5	Skin Temperature		(d) 3-axis Acceleration (Magr	nitude)
0.5	Δ	Behavioural	- i			- 0.225	Participant 1	Participant 2	Participant 3	Participant 4	Participant 5	Participant 6
0.4		Emotional Cognitive	4	0.02 0.01	0.09 (- 0.200		Whiteboard	board	Whiseboard		Whisboard
0.000.00	AA		о а	0.01 0.07	0.04	0.09 - 0.150				and the second second second	Contraction of the second	States States
0.3 0.2		5	Arousal 2 3			- 0.125						
1/20120-0	\sim		- 0	0.03 0.04	0.07 0	0.08						

Participant 7

Participant 13

Participant 8

Participant 14

Participant 9

Whiteboard

Participant 15

Participant 10

Whitebo and

Participant 16

- 0.075

- 0.050

0.025

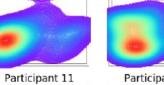
0.03

4

0.04

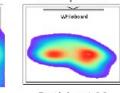
1

-


0.23

2

3


Valence

(b) Valence and Arousal

Participant 17

Participant 12

Participant 18

0.1

0.0

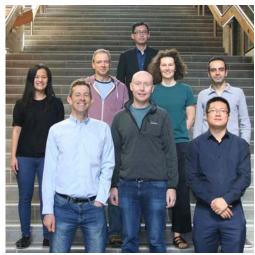
0 1 2 3 4

Engagement Score

(a) Multi-dimensional Engagement

5 6

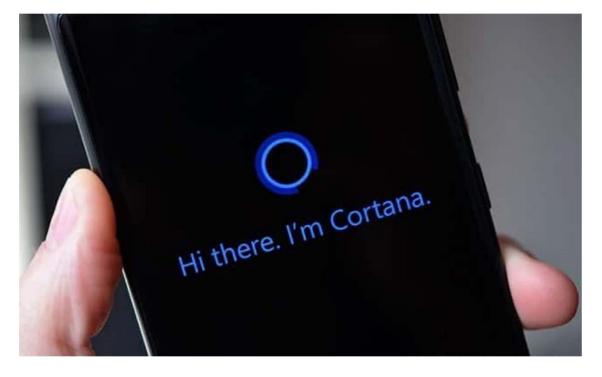
Microsoft Cortana Intelligence Institute


Overview:

Cortana Intelligence Institute is driving the next-generation of capabilities for Microsoft's digital assistant, Cortana. Focused on researching work-related tasks and using sensors in mobile phones, the CII team builds a complex multidimensional data set, used to model and predict user's work-related tasks.

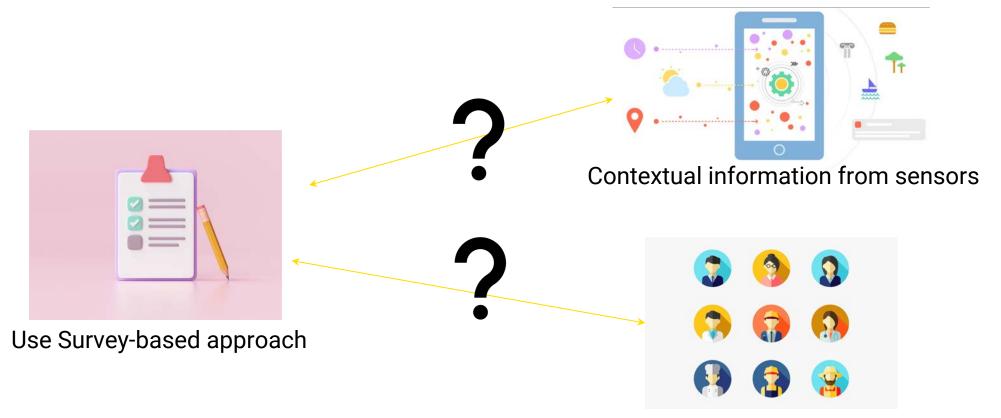
Impact:

- Task intelligence, to support complex tasks such as tracking a person's progress on a task, reminders, or assisting with completion of a task.
- Create a virtual assistant that can manage a calendar, understand the user, be aware of context, and support multi-turn dialogues.

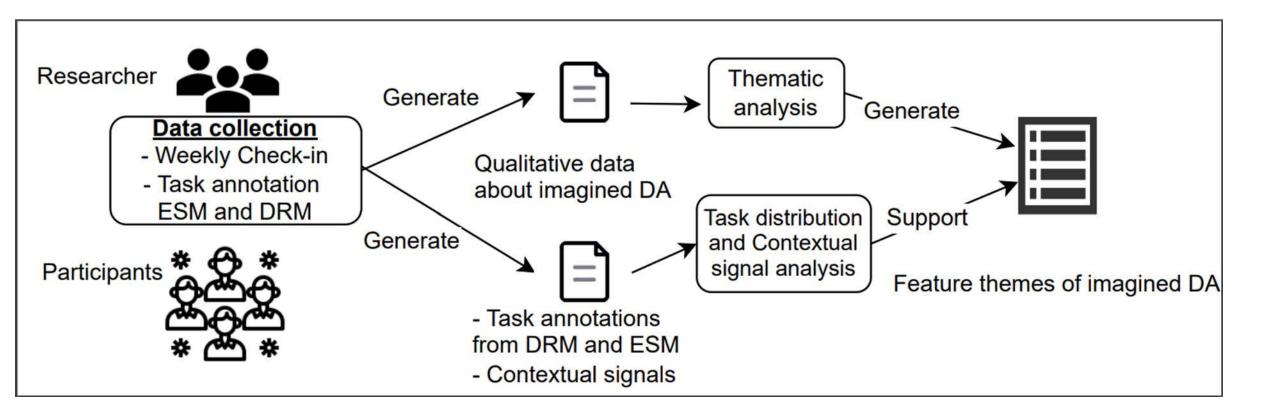


Understanding Mobile Information Needs

Microsoft Cortana Intelligence Institute, RMIT University



Khaokaew, Y., Holcombe-James, I., Rahaman, M.S., Liono, J., Trippas, J.R., Spina, D., Bailey, P., Belkin, N.J., Bennett, P.N., Ren, Y. and Sanderson, M., 2022. Imagining future digital assistants at work: A study of task management needs. *International Journal of Human-Computer Studies*, *168*, p.102905.


Research Gaps (User's need on Digital assistants)

The performed tasks based on occupations

Methodology (Mixed method)

Khaokaew, Y., Holcombe-James, I., Rahaman, M.S., Liono, J., Trippas, J.R., Spina, D., Bailey, P., Belkin, N.J., Bennett, P.N., Ren, Y. and Sanderson, M., 2022. Imagining future digital assistants at work: A study of task management needs. *International Journal of Human-Computer Studies*, *168*, p.102905.

Task annotation

Categorized into

Task [XYZ]

Task taxonomy [*]

- 1. Travel
- 2. Physical
- 3. Education
- 4. Meals breaks
- 5. Communication
- 6. Planning
- 7. Project
- 8. Documentation
- 9. Low level
- 10. Admin + management
- 11. Finance
- 12. IT
- 13. Customer care
- 14. Problem solving

* Trippas, J.R., Spina, D., Scholer, F., Awadallah, A.H., Bailey, P., Bennett, P.N., White, R.W., Liono, J., Ren, Y., Salim, F.D. and Sanderson, M., 2019, March. Learning about work tasks to inform intelligent assistant design. In *Proceedings of the 2019 Conference on Human Information Interaction and Retrieval* (pp. 5-14).

Methodology (Contextual signals)

Category	Signals	Description		
	Social	associated with user distraction		
	Messaging	indication of personal and direct communication		
Device usage (Cyber)	Travel	indication of journey planning		
	Email	indicator of professional communication		
	Calendar	indication of daily scheduling		
Journey (Movement)	Number of regular places	average number of regular places		
	Number irregular places	average number irregular places		
	Number of long-range journeys	average number of long-range journeys		
	Number of short-range journeys	average number of short-range journeys		
Social (Social interact)	Meeting per day	average number of meeting per day		
	Meeting attendees	average number of Meeting attendees		

Khaokaew, Y., Holcombe-James, I., Rahaman, M.S., Liono, J., Trippas, J.R., Spina, D., Bailey, P., Belkin, N.J., Bennett, P.N., Ren, Y. and Sanderson, M., 2022. Imagining future digital assistants at work: A study of task management needs. *International Journal of Human-Computer Studies*, *168*, p.102905.

Result (relationship between Tasks and Subthemes)

Table 5. Top 10 relationships based on the lift value from association rules between tasks and themes (all with p-value < 0.1 using Fisher's exact test).

Antecedent (Task) -> Consequent (Sub-Themes)	Lift	p-value
Project -> Project management	2.2932	< 0.0001
Communication -> User improvement	1.4653	< 0.0001
Planning -> Recommendations	1.4018	< 0.0001
Documentation -> User improvement	1.3240	0.0002
Admin management -> Recommendations	1.2867	< 0.0001
Admin management -> Project management	1.2425	0.0019
Documentation -> Workflow	1.2395	0.0060
IT -> Workflow	1.2127	0.0641
Project -> Scheduling	1.1878	0.0003
Planning -> Traffic and transportation	1.1612	0.0685

Khaokaew, Y., Holcombe-James, I., Rahaman, M.S., Liono, J., Trippas, J.R., Spina, D., Bailey, P., Belkin, N.J., Bennett, P.N., Ren, Y. and Sanderson, M., 2022. Imagining future digital assistants at work: A study of task management needs. *International Journal of Human-Computer Studies*, *168*, p.102905.

A non-typical output: a US patent with Microsoft Research

Google Patents

Scheduling tasks based on cyber-physical-social contexts

Abstract

Methods and systems are disclosed for scheduling a task of a user based on a cyber-physical-social (CPS) context of activities. The present disclosure is directed to increasing the efficiency of performing tasks by grouping tasks with the same or similar task CPS contexts so that they are performed in conjunction with one another. A stream of user activities is received that encompasses the CPS context, tasks are identified and classified based on a CPS context model. The CPS model is trained using CPS context and annotations for identified tasks as input to create classes of tasks. The classes of tasks from the model are used to group similar tasks. The present disclosure enables users to receive recommendations on clustering tasks with the same or similar contexts based on an online tool, a location, and collaborators to be performed together to improve productivity.

Images (10)

□ 8~ ~	1	- (major) - (·	4.em	them.	111	1
	The -			10.	. in .		
	1494-0-1	-2000/00/00 -(1900/00/00/00/00/00/00/00/00/00/00/00/00/	- (market)	kolis 2	hoilis 2		
	0/11 VI			1	1-		
11 mm	네가 위 '신가	146.2	10.5	Doctory.	Rented at	145.5	

Classifications

G06Q10/10 Office automation; Time management

View 3 more classifications

US11741437B2 United States

📄 Download PDF 🛛 🔍 Find Prior Art 🛛 \Sigma Similar

Inventor: Ryen William White, Omar SHAYA, Kevin Michael CARTER, Yongli Ren, Jonathan LIONO, Flora Dilys SALIM

Current Assignee : Microsoft Technology Licensing LLC

Worldwide applications

2020 US 2021 WO EP CN

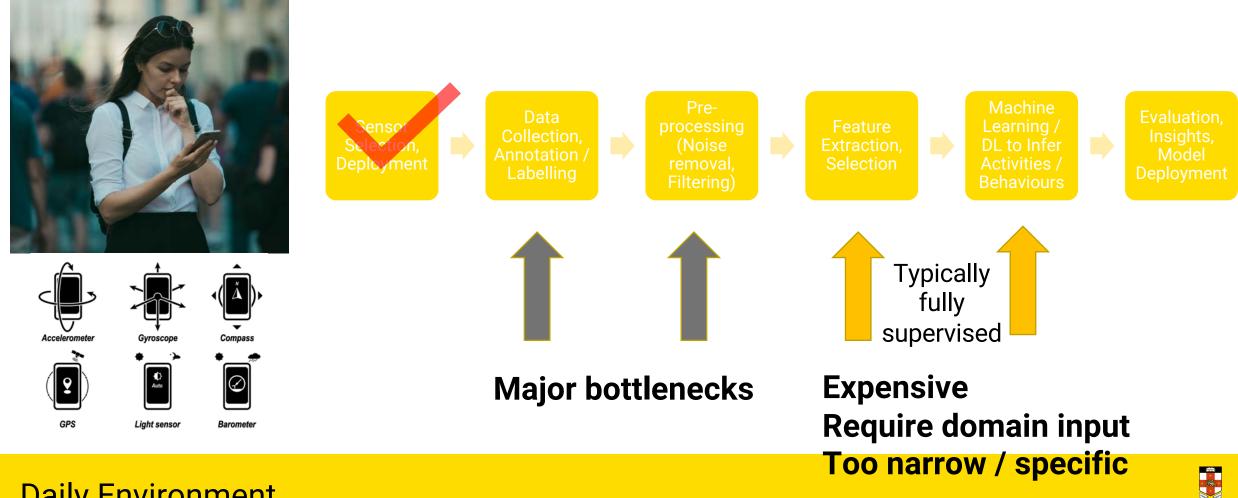
Application US16/817,828 events ③

2020-03-13 . Priority to US16/817,828

2020-03-13 • Application filed by Microsoft Technology Licensing LLC

2021-09-16 • Publication of US20210287182A1

2023-08-29 • Publication of US11741437B2


2023-08-29 • Application granted

Status • Active

2040-04-01 · Adjusted expiration

Show all events ~

Typical pipeline for human activity recognition

Daily Environment

Learning from the Open World with Data in the Wild: Different types of spatio-temporal data from urban sensors

ST Event Data ST Trajectory Data ST Raster Data ST Graph Data Time-Series with (sporadic) spatial reference

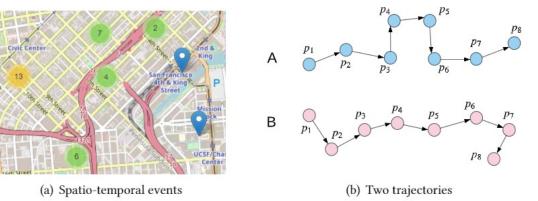


Fig. 1. Examples of spatio-temporal events and trajectories

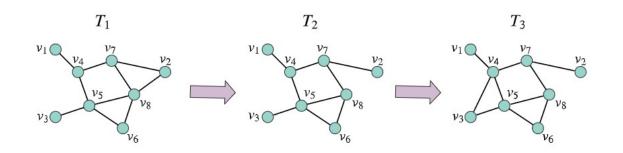
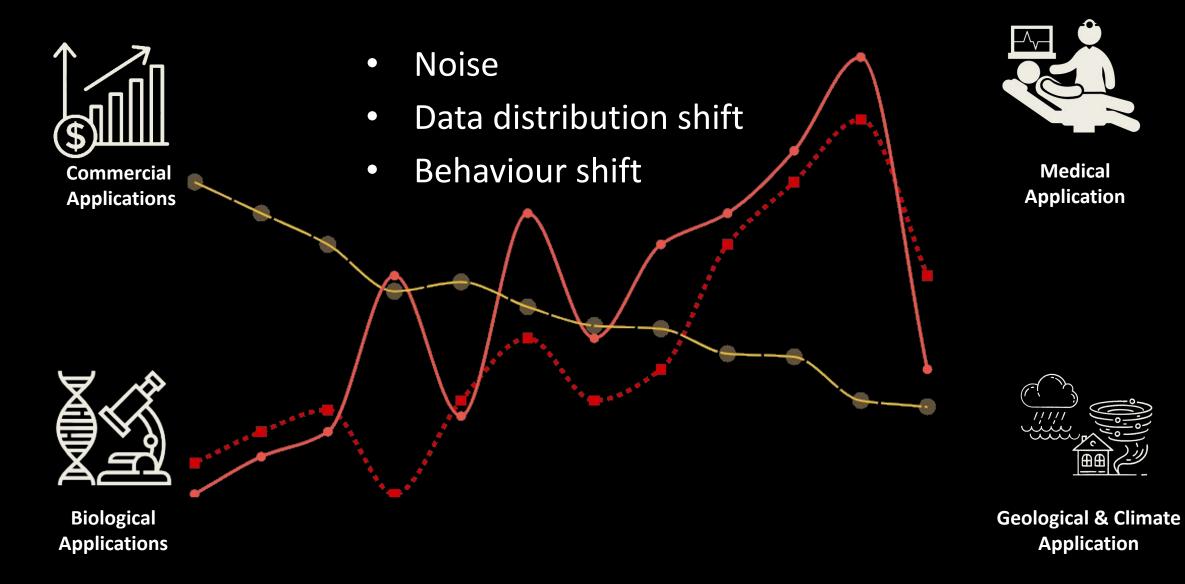
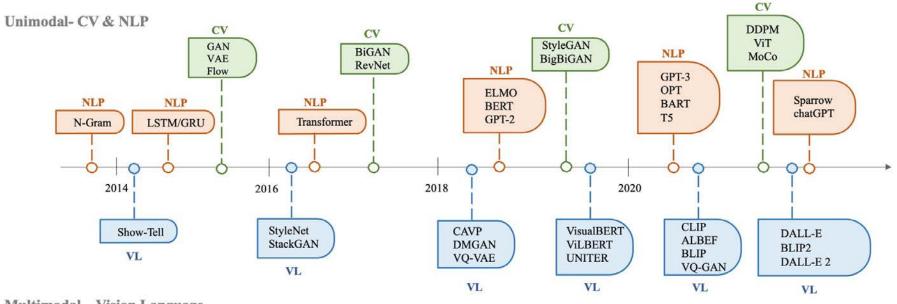



Fig. 2. Example of Spatio-temporal Graph Data

Gao, N., Xue, H., Shao, W., Zhao, S., Qin, K.K., Prabowo, A., Rahaman, M.S. and Salim, F.D., 2022. Generative adversarial networks for spatio-temporal data: A survey. *ACM Transactions on Intelligent Systems and Technology (TIST)*, *13*(2), pp.1-25.

ChatGPT:

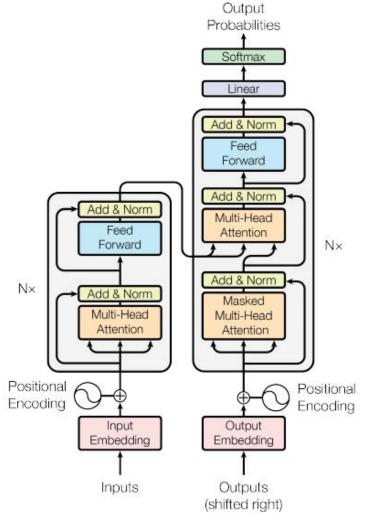
Chat


Generative

Pre-trained

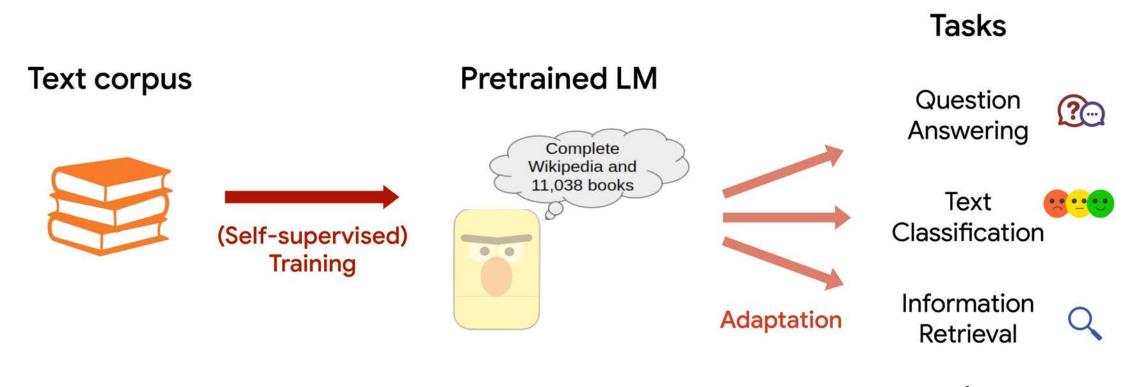
Transformer

The evolution of Generative Als on vision, text, and multimodal data



Multimodal - Vision Language

Image credit: Cao et al., 2023, A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT


Transformer marked the birth of Large Language Models (LLMs)

From "Attention is all you need" paper by Vaswani, et al., 2017

Pre-trained Language Model


:

How can I harness GPT paradigm for multimodal and mobility sensor data?

Self-supervised Pretraining for Multimodal and Mobility Sensor Data

nen et anno oper titera transmo RA BRA Weltrack Telle laget anternet anno Otterstant menget spensel anternet Weltrack V under transf. Frank menge Na Brack Na Brack basiltan viel stransf. Index Nation, ved nagitar viel versionen i manimum Versionen anter Dirach and Brasman Bastande anternet anternet anternet Bastande anternet anternet anternet Weltrack versionen anternet anternet Wertrack versionen anternet

Typical machine learning algorithms require a high volume of training data

MON

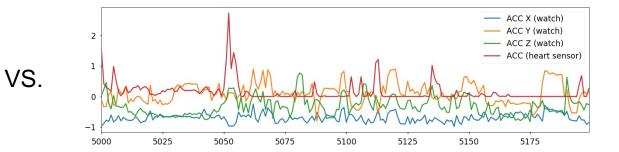
170

160

150

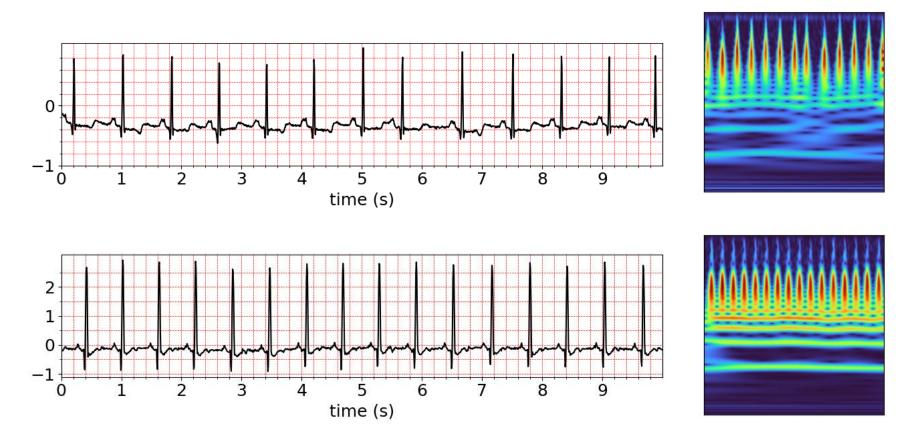
140

130

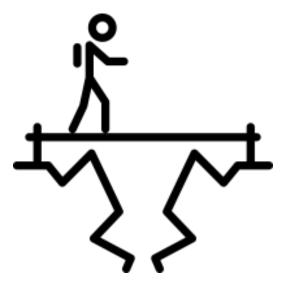

120

In In I at the second

Limited resources of labeled sensor data

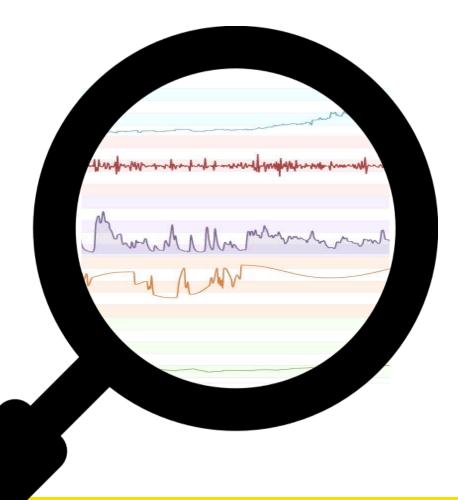

Annotating

Machine learning traditionally requires handcrafted feature engineering

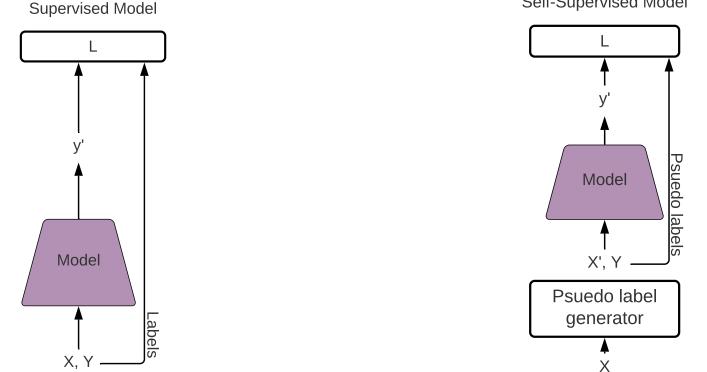


Which of the two ECG sensor sample representation shows someone with cardiac arrythmia?

Deldari, S., Xue, H., Saeed, A., He, J., Smith, D. V., & Salim, F. D. (2022). Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data. *arXiv preprint arXiv:2206.02353*.


Challenges with real-world timeseries and spatiotemporal data

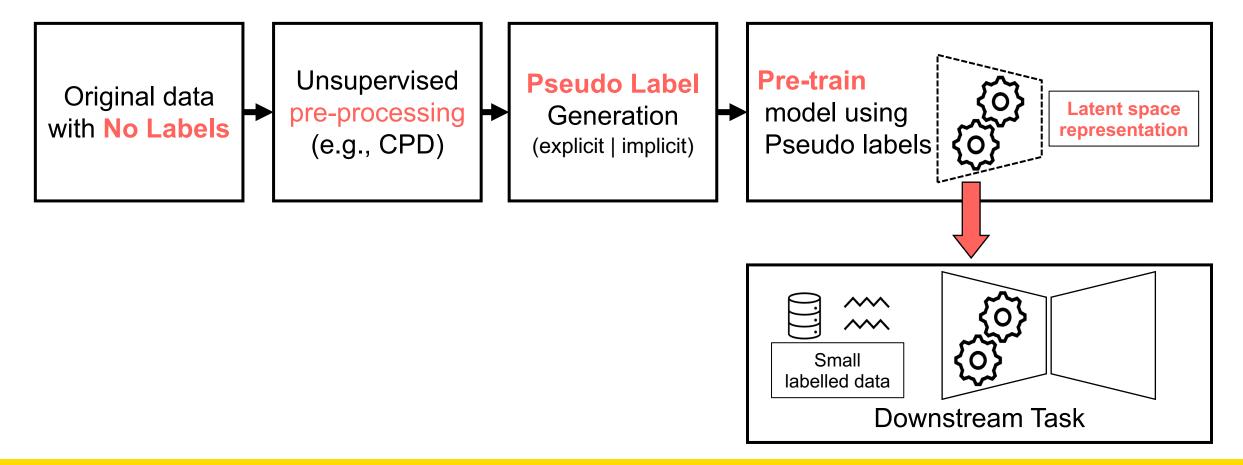
Annotation of big sensor data is often infeasible


Annotation of big sensor data is *infeasible*:

- Challenging
- Time-consuming
- Expensive
- Inaccurate in some cases

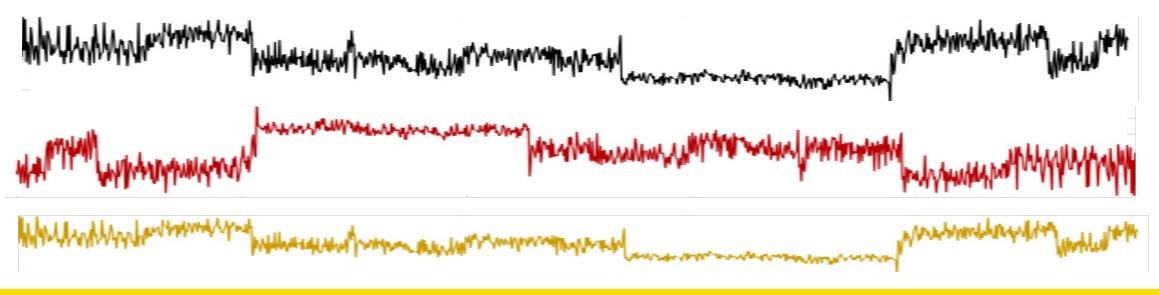
Supervised vs self-supervised

Self-supervised learning doesn't require labels.

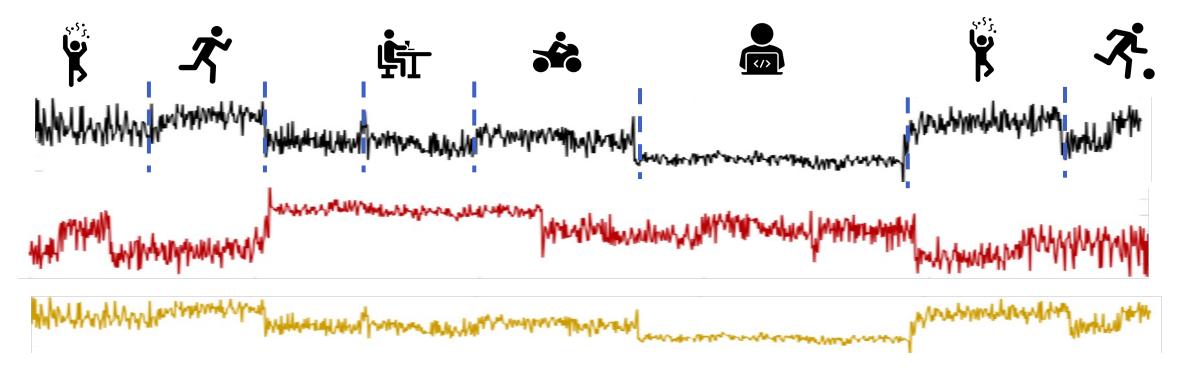

It obtains supervisory signals from the data itself by learning a pretext task

Self-Supervised Model

Deldari, S., Xue, H., Saeed, A., He, J., Smith, D. V., & Salim, F. D. (2022). Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data. arXiv preprint arXiv:2206.02353.

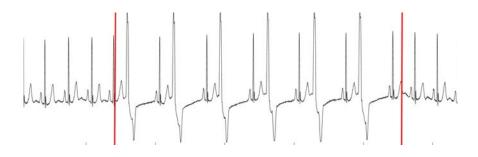

Self-supervised Learning Framework

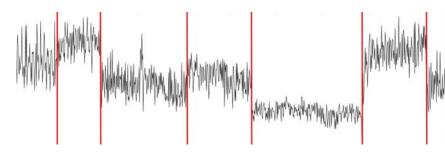
No label, No boundary


Detects constituent segments and change points within time series.

No label, No boundary

Detects constituent segments and change points within time series.




Various types of changes in sensor data

We categorize the input data based on whether they show:

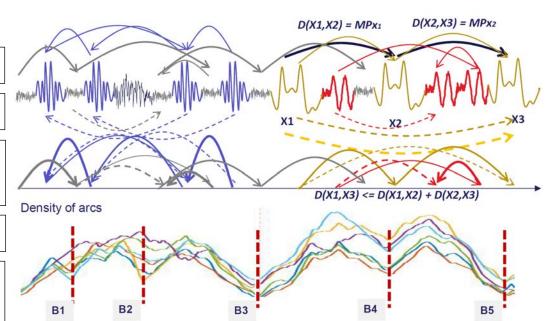
Repetitive / non-repetitive temporal shape

Gradual / sudden changes

Combination of those

Categories	Gradual changes	Sudden changes		
Repetitive patterns	1. Hand Gesture	2. PAMAP, 3. RFID, 4. USC-HAD		
Non-Repetitive patterns	5. EYE, 6. Emotion	7. WESAD		

ESPRESSO: Entropy and ShaPe awaRe timE-Series SegmentatiOn


ESPRESSO can handle:

- 1. Repetitive/non-repetitive temporal changes
- 2. Gradual/sudden changes
- 3. Combination of both

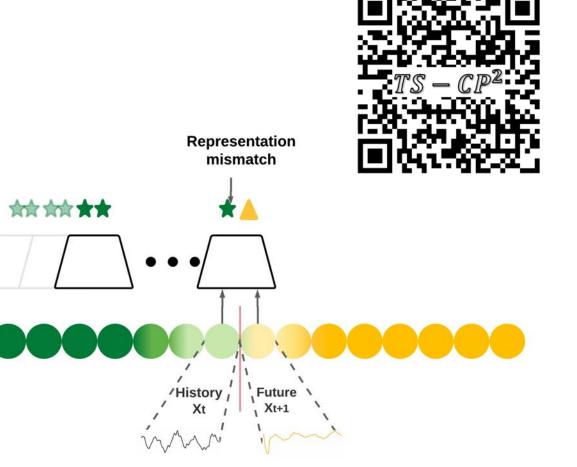
How can we brew the ESPRESSO?

- 1. Extract the most similar patterns
- 2. Extract chain of similar patterns
- 3. Assign weight of arcs based on similarity and temporal distance
- 4. Extract Segment Boundary Candidates

5. Greedy search over candidates to find combination of segments with the least Entropy

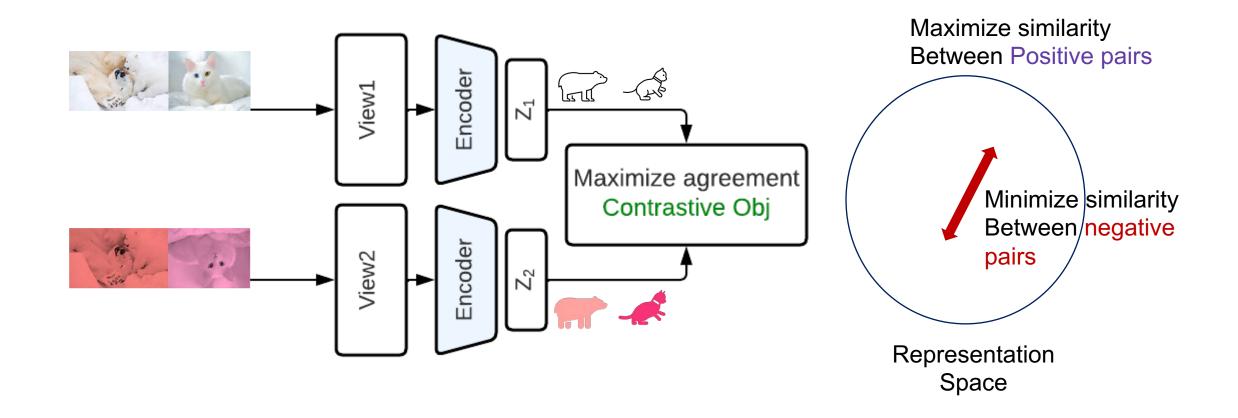
ESPRESSO: Evaluation

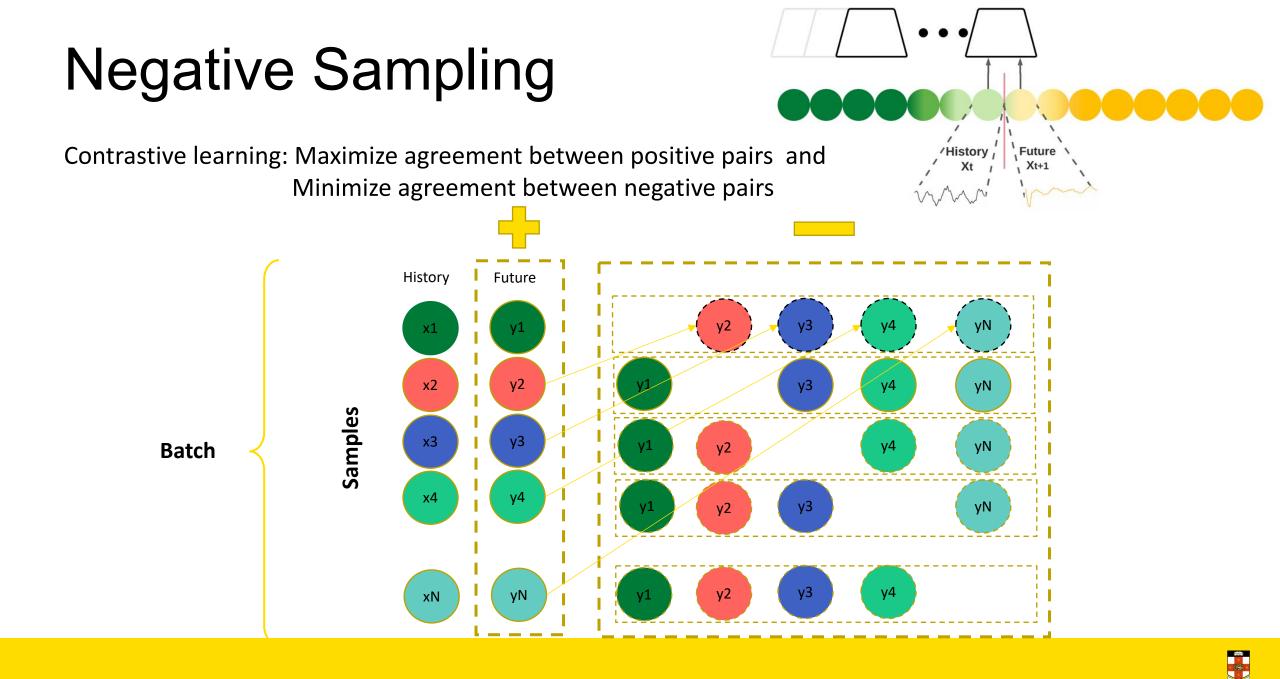
SOTA comparison



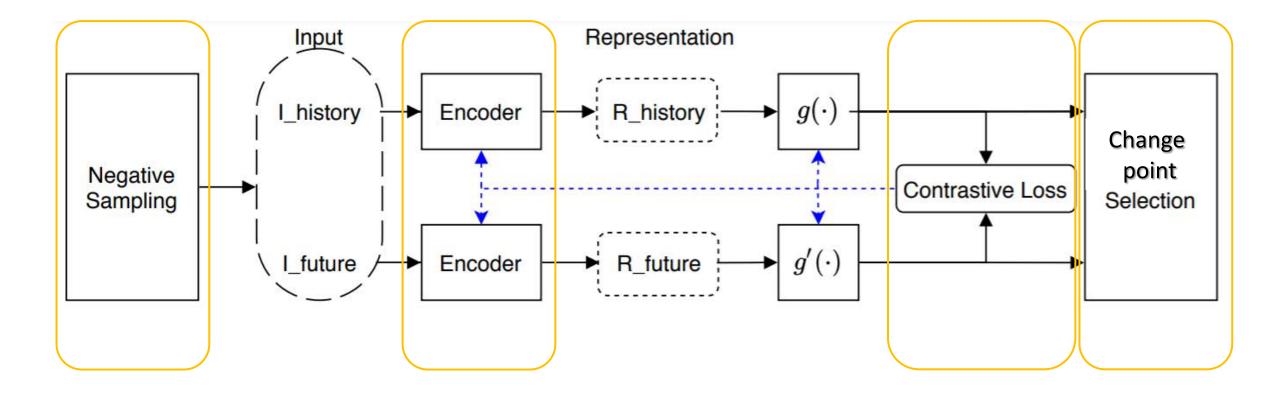
	<u> </u>	Datacat	1						1 Carry 47 59
		Dataset	PAMAP	RFID	Hand Gesture	USC-HAD	WESAD	EYE	Emotion
-	Feature								
	IGTS	Stat.	1	0.9554	0.3825	0.7333	0.6154	0.5116	0.5556
re	FLOSS	Shape	0.3778	0.4106	0.5379	0.3733	0.1795	0.4252	0.4722
F-score	aHSIC	Stat.	0.5556	0.7787	0.2188	0.4	-	0.5312	0.00
F-9	RuLSIF	Stat.	0.1556	0.8560	0.2529	0.4133	0.3667	0.5336	0.2222
	ESPRESSC	Hybrid	1	0.9378	0.6209	0.7467	0.6410	0.5821	0.5833
	IGTS	Stat.	0.0024	0.0401	0.4270	0.1939	0.2195	0.0997	0.0607
Ê	FLOSS	Shape	0.2779	0.3969	0.3166	0.3267	0.5140	0.1114	0.1219
RMSE)	aHSIC	Stat.	0.1659	0.1411	0.4069	0.3147	-	0.1070	0.2359
RI	RuLSIF	Stat.	0.8375	0.1013	0.3792	0.3338	0.2873	0.2727	0.5746
	ESPRESSC	Hybrid	0.0030	0.0692	0.2764	0.1933	0.1936	0.05	0.0719

TS-CP²: Time series Change Point Detection using **Contrastive Learning**


- We propose a multi-task model to
 - Learn representation using Contrastive learning
 - Predict future based on Contrastive **Predictive Coding**
- We use the representation learning task as an auxiliary task to do **Change Point Detection**.
- Also applicable for **Anomaly detection with no** labelled data


Source code on GitHub:

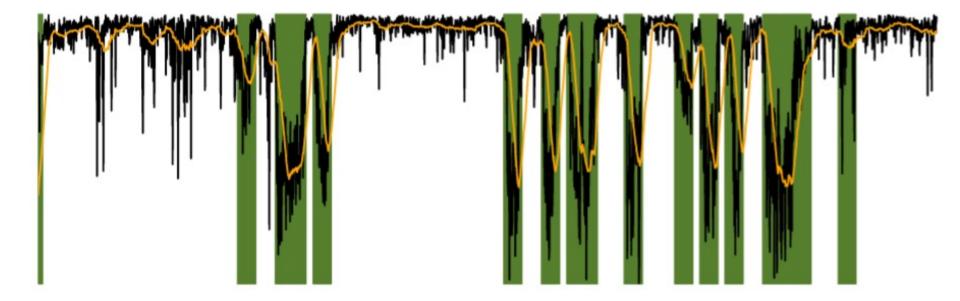
Self-Supervised Contrastive Learning



Chen, T., Kornblith, S., Norouzi, M. and Hinton, G., 2020, November. A simple framework for contrastive learning of visual representations. In *International conference on machine learning.*

TS-CP²: Framework

Evaluate the representations: Change Point Detection

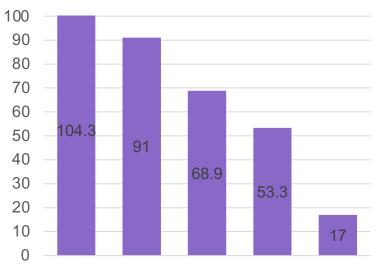

• We hypothesize that when a change point intersects the embeddings of the history and future intervals, they will be distributed differently.

Ground Truth

Pair similarity

Moving average

• To detect change points we utilise the cosine similarity between the latent embeddings of the history and future intervals



Evaluation

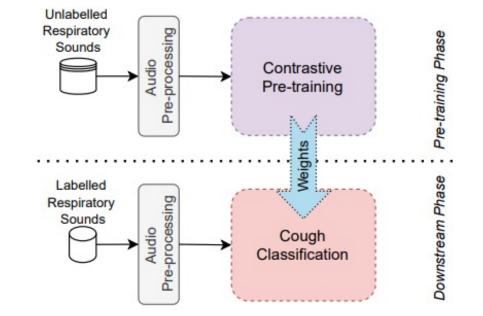
F1 score improvement (%)

Baselines

-	Maximum Delay	24		50		75		
Dataset	Methods	Best Wnd	F1-score	Best Wnd	F1-score	Best Wnd	F1-score	
	FLOSS	45	0.2083	50	0.3375	55	0.4233	
	aHSIC	40	0.4092	40	0.4175	40	0.4392	
Vahaa	RuLSIF	20	0.3175	20	0.3317	20	0.37	
Yahoo	ESPRESSO	50	0.2242	50	0.34	70	0.4442	
	KLCPD	24	0.5787	50	0.5760	75	0.5441	
	$TS - CP^2$	24	0.64	50	0.8104	75	0.8428	
	Maximum Delay	100		200		400		
	FLOSS	100	0.2666	100	0.3666	400	0.4333	
	aHSIC	50	0.3333	50	0.3333	50	0.4	
USC	RuLSIF	400	0.4666	400	0.4666	400	0.5333	
	ESPRESSO	100	0.6333	100	0.8333	100	0.8333	
	KLCPD	win:100, bs:4	0.7426	win:200,bs:32	0.7180	win:400,bs:16	0.6321	
	$TS - CP^2$	win:100, bs:8	0.8235	win:200, bs:8	0.8571	win:400, bs:32	0.8333	
	Maximum Delay	60		100		200		
	FLOSS	60	0.3088	60	0.3913	100	0.5430	
	aHSIC	40	0.2308	40	0.3134	40	0.4167	
HASC	RuLSIF	200	0.3433	200	0.5	200	0.5	
	ESPRESSO	100	0.2879	60	0.4233	100	0.6933	
	KLCPD	win:60,bs:4	0.4785	win:100,bs:4	0.4726	win:200,bs:64	0.4669	
	$TS - CP^2$	win:60,bs:64	0.40	win:100,bs:64	0.4375	win:200,bs:64	0.6316	

Source code on GitHub:

Deldari, S., Smith, D. V., Xue, H., & Salim, F. D. (2021, April). Time Series Change Point Detection with Self-Supervised Contrastive Predictive Coding. In Proceedings of the Web Conference 2021 (WWW 2021) pp. 3124-3135 .



Exploring Self-Supervised Representation Ensembles for COVID-19 Cough Classification

Fully-supervised based classification methods inevitably need to rely on wellannotated cough sounds data

Not easy to get annotated labels (especially for COVID-19 sounds)

- Manually annotation: require experts with medical expertise, hard to label large-scale datasets
- Survey: asking participants to report their health status -> privacy concern about sensitive medical data -> limited access of datasets

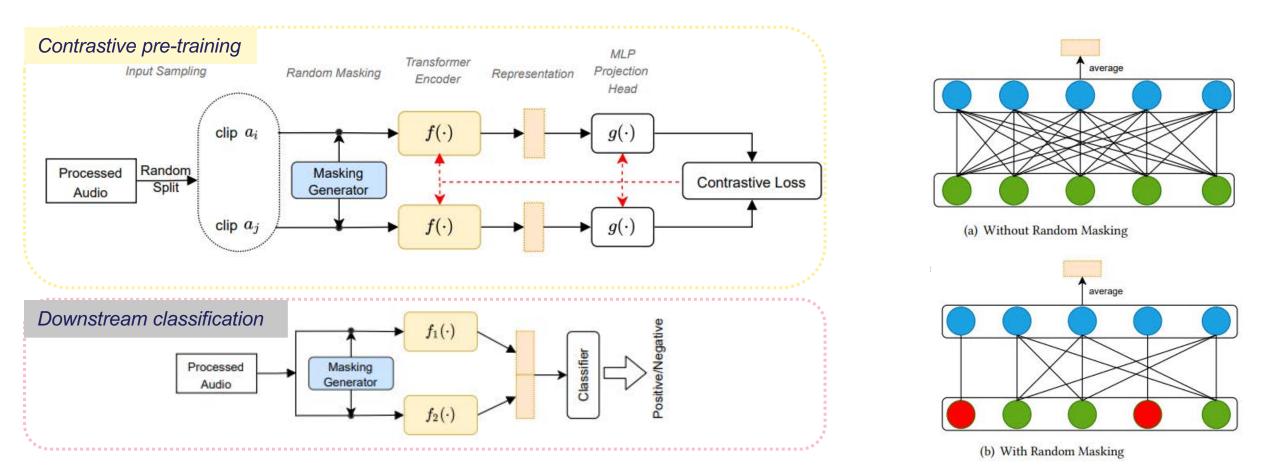


Figure 1: Concept illustration of the proposed framework.

Patent: Hao Xue, Flora D. Salim. Method and systems for respiratory sound classification. (Australian Patent 2022224848, Worldwide Patent WO2023015361A1)

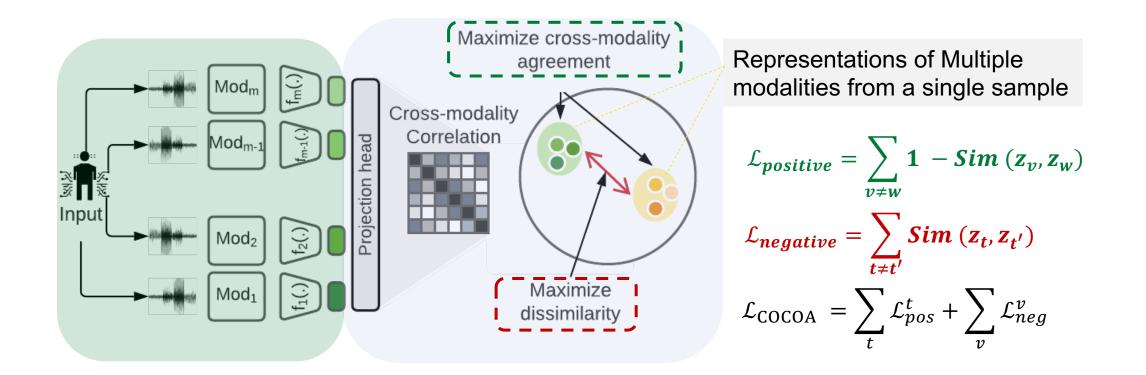
Publication: Xue, H. and Salim, F.D., 2021, August. Exploring self-supervised representation ensembles for COVID-19 cough classification. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

Contrastive learning-based pre-training phase with unlabeled data

Ensembled architecture for downstream classification fine-tuning with labelled data

Introduce random masking generator in both phases to further improve the performance

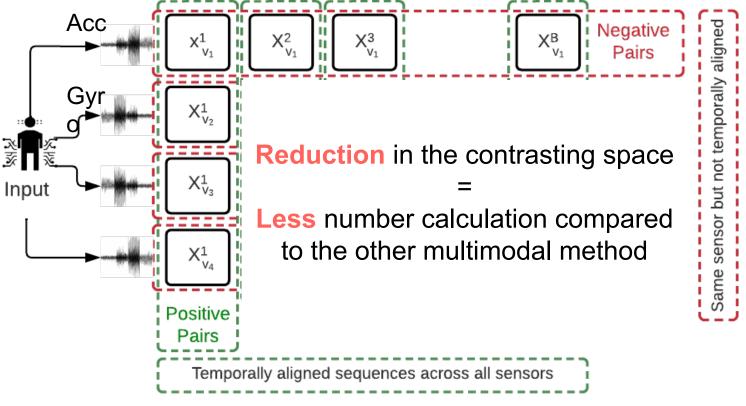
Pretrained on IIS-Coswara dataset, Tested on Cambridge COVID-sounds dataset


Table 1: Results (on the testing set) of different models and configurations. For each result, the standard deviation is reported in a bracket.

Model	Self-supervise	Pre-train	Fine-tune	ROC-AUC	Recall	Precision	Accuracy	Average F1
	×	X	N/A	76.14 (0.21)	53.19 (2.29)	73.17 (1.87)	74.88 (0.22)	61.60
VGGish	×	1	×	85.02 (1.73)	67.42 (2.06)	78.55 (2.21)	80.71 (1.32)	72.56
	×	1	1	87.34 (1.14)	69.49 (1.44)	83.15 (1.46)	83.12 (0.31)	75.71
GRU	×	х	N/A	84.43 (0.88)	65.60 (1.43)	82.67 (1.89)	81.76 (0.39)	73.15
Transformer	×	×	N/A	87.60 (0.71)	71.53 (1.12)	80.64 (1.19)	82.73 (0.41)	75.81
CPULCP	~	1	×	83.20 (0.43)	63.43 (1.82)	78.63 (1.22)	79.63 (0.31)	70.22
GRU-CP	1	1	1	87.08 (0.35)	71.72 (2.53)	81.61 (2.26)	83.15 (0.32)	76.35
Transformer-CP	1	1	×	84.34 (0.71)	64.94 (1.80)	78.56 (1.40)	80.02 (0.42)	71.10
	1	1	1	88.83 (0.53)	73.07 (0.65)	81.99 (0.92)	83.74 (0.39)	77.27

COCOA Cross mOdality COntrastive leArning for Sensor Data

Deldari, Shohreh, Hao Xue, Aaqib Saeed, Daniel V. Smith, and Flora D. Salim. "COCOA: Cross Modality Contrastive Learning for Sensor Data." *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies* 6, no. 3 (2022): 1-28.



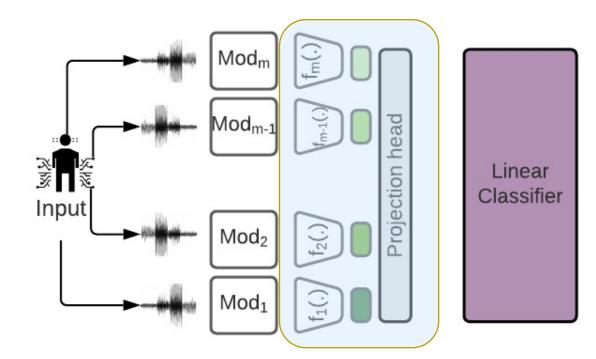
COCOA Cross MOdality COntrastive LeArning for Sensor Data

- COCOA is the first to apply contrastive learning for multiple sensors of different modalities.
- ✓ COCOA has linear complexity in terms of the number of sensors.
- ✓ COCOA is highly label efficient.
- ✓ COCOA performs well with smaller batch sizes.

Positive and Negative Pair Sampling

Negative Pairs are selected from the same source. Higher similar characteristics results in harder negatives.

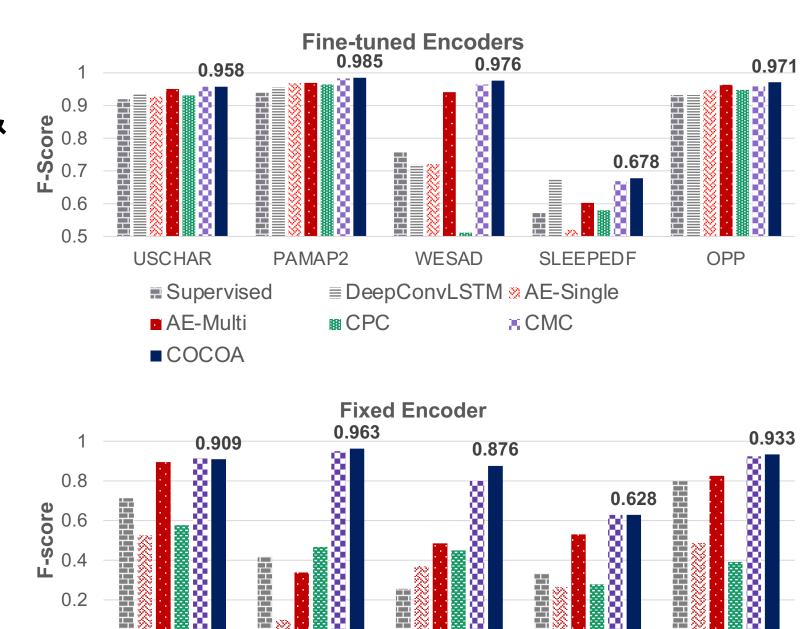
Positive Pairs are selected from **different** sources which results in **harder positives**.


COCOA Evaluation

Application	Dataset	Modality	Subjects	Size	Classes
Human Activity Recognition	UCIHAR	Acc, Gyro	30	2.5K	walking, walking up/downstairs, sitting, laying, standing {6}
Recognition	PAMAP2	3xAcc (arm, chest, ankle)	9	11K	sitting, standing, walking, run- ning, cycling, nordic-walking, as- cending/descending stairs, rope- jumping {9}
	Opportunity	5xAcc (back, left L-arm, right U-arm, left/right shoe)	4	23K	standing, walking, sitting, lying
Sleep Stage Detection	SLEEPEDF	2xEEG, EOG, EMG	20	55K	Awake, Rapid Eye Movement, N1, N2-N3, and N4 {5}
Emotion Recognition	WESAD	Acc, ECG, EMG, EDA	15	21K	baseline, stress, amusement, and meditation {4}

COCOA Evaluation setup

SSL Pre-trained Encoder


We used the same encoder for all 10 SOTA baselines.

- Fixed:
- Fine-tuned:
- Fully supervised

Frozen SSL pre-trained encoder + Linear classifier SSL pre-trained encoder + Linear classifier encoder + Linear classifier

COCOA Baseline Evaluation & Ablation

WESAD

■ AE-Multi ■ CPC

SLEEPEDF

• CMC

OPP

COCOA

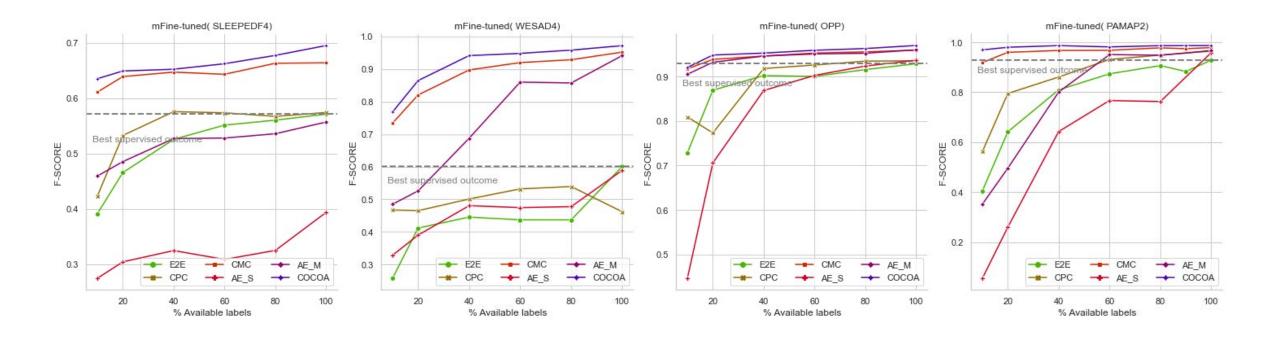
Less computation in COCOA compared to CMC

0

USCHAR

Supervised

PAMAP2


AE-Single

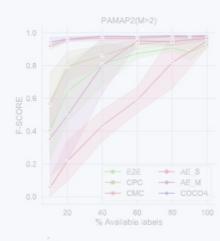
Outperform the fully

supervised baseline

COCOA Data Efficiency

Even with 10% of labels we can outperform the fully supervised baseline with 100% labels.

PAMAP2



SLEEPEDF

WESAD

OPPORTUNITY

- DCL --- Barlow - COCOA

UCIHAR

Datasets

0.8

E2E	Fixed	E2E	Fixed	E2E	Fixed	E2E	Fixed	E2E	Fixed
91.9(1.4)	71.3(7.2)	89.3(2.9)	26.7(8.3)	55.6(8.8)	22.8(2.4)	50.4(8.9)	25(2.4)	88.5(3.1)	66.8(3.5)
93.6(1.5)	57.5(3.4)	91.1(3.4)	18.9(3.6)	62.1(15.9)	30.1(8.7)	51(8.7)	24.9(3.6)	90.3(3.4)	23.8(8)
94.7(1)	89.8(1.7)	97.2(0.7)	90.5(2.7)	90.7(4.7)	61.6(7.4)	60.7(4.2)	53.7(2.0)	93.4(0.9)	85.6(2.3)
94.8(0.9)	91(3.5)	97.2(0.6)	90.4(4.1)	90.2(4.6)	61.9(8.4)	60.7(4.4)	55.2(5.2)	93.3(2.3)	85(1)
95.9(1.3)	91.4(4.4)	97.6(1.2)	90.9(2.9)	90.5(4)	62.8(7.6)	60.5(4.2)	55.5(0.9)	93.5(0.6)	85.7(0.8)
95.8(1.3)	90.9(2)	97.4(0.4)	91(2.9)	91.5(2.9)	63.1(8.6)	62.2(1.9)	57.4(1.3)	93.9(1.3)	85.7(1.2)
-(-)	-(-)	93.9(1.2)	41.9(5.7)	75.7(6.1)	25.7(2.8)	57.1(1)	33.3(2.5)	93.2(1.4)	79.8(2.5)
93.6(2.2)	-(-)	95.6(0.6)	-(-)	71.9(3.8)	-(-)	67.4(1.7)	-(-)	93.2 (1.7)	-(-)
92.7(1.3)	52.6(4.8)	96.8(0.7)	9.9(8.9)	72.1(15.4)	37(4.1)	52(4.3)	26.5(1.3)	94.7(0.3)	48.7(9.2)
95.1(1.4)	89.5(2.7)	96.9(0.8)	33.8(15.9)	94.1(2.5)	48.6(2.9)	60.3(2.1)	53(0.9)	96.3(0.5)	82.5(6.6)
93.1(2)	57.7(16.9)	96.4(1.1)	46.7(5.6)	51.2(4.4)	44.9(1.8)	58(1.8)	27.9(1.3)	94.8(0.7)	39.2(11.2)
-(-)	-(-)	98.3(0.1)	94.9(0.3)	96.4(0.2)	80(8.2)	66.9(1.2)	62.8(1)	95.9(0.6)	92.4(0.4)
95.8(1.3)	90.9(2)	98.5(0.4)	96.3(1.4)	97.6(0.5)	87.6(1.7)	67.8(1.5)	62.8(2.3)	97.1(0.6)	93.3(0.5)
	93.6(1.5) 94.7(1) 94.8(0.9) 95.9(1.3) 95.8(1.3) -(-) 92.7(1.3) 95.1(1.4) 93.1(2) -(-)	93.6(1.5) $57.5(3.4)$ $94.7(1)$ $89.8(1.7)$ $94.8(0.9)$ $91(3.5)$ $95.9(1.3)$ $91.4(4.4)$ $95.8(1.3)$ $90.9(2)$ $-(-)$ $-(-)$ $93.6(2.2)$ $-(-)$ $92.7(1.3)$ $52.6(4.8)$ $95.1(1.4)$ $89.5(2.7)$ $93.1(2)$ $57.7(16.9)$ $-(-)$ $-(-)$	93.6(1.5) $57.5(3.4)$ $91.1(3.4)$ $94.7(1)$ $89.8(1.7)$ $97.2(0.7)$ $94.8(0.9)$ $91(3.5)$ $97.2(0.6)$ $95.9(1.3)$ $91.4(4.4)$ $97.6(1.2)$ $95.8(1.3)$ $90.9(2)$ $97.4(0.4)$ $-(-)$ $-(-)$ $93.9(1.2)$ $93.6(2.2)$ $-(-)$ $95.6(0.6)$ $92.7(1.3)$ $52.6(4.8)$ $96.8(0.7)$ $95.1(1.4)$ $89.5(2.7)$ $96.9(0.8)$ $93.1(2)$ $57.7(16.9)$ $96.4(1.1)$ $-(-)$ $-(-)$ $98.3(0.1)$	93.6(1.5) $57.5(3.4)$ $91.1(3.4)$ $18.9(3.6)$ $94.7(1)$ $89.8(1.7)$ $97.2(0.7)$ $90.5(2.7)$ $94.8(0.9)$ $91(3.5)$ $97.2(0.6)$ $90.4(4.1)$ $95.9(1.3)$ $91.4(4.4)$ $97.6(1.2)$ $90.9(2.9)$ $95.8(1.3)$ $90.9(2)$ $97.4(0.4)$ $91(2.9)$ $-(-)$ $-(-)$ $93.9(1.2)$ $41.9(5.7)$ $93.6(2.2)$ $-(-)$ $95.6(0.6)$ $-(-)$ $92.7(1.3)$ $52.6(4.8)$ $96.8(0.7)$ $9.9(8.9)$ $95.1(1.4)$ $89.5(2.7)$ $96.9(0.8)$ $33.8(15.9)$ $93.1(2)$ $57.7(16.9)$ $96.4(1.1)$ $46.7(5.6)$ $-(-)$ $-(-)$ $98.3(0.1)$ $94.9(0.3)$	93.6(1.5) $57.5(3.4)$ $91.1(3.4)$ $18.9(3.6)$ $62.1(15.9)$ $94.7(1)$ $89.8(1.7)$ $97.2(0.7)$ $90.5(2.7)$ $90.7(4.7)$ $94.8(0.9)$ $91(3.5)$ $97.2(0.6)$ $90.4(4.1)$ $90.2(4.6)$ $95.9(1.3)$ $91.4(4.4)$ $97.6(1.2)$ $90.9(2.9)$ $90.5(4)$ $95.8(1.3)$ $90.9(2)$ $97.4(0.4)$ $91(2.9)$ $91.5(2.9)$ $-(-)$ $-(-)$ $93.9(1.2)$ $41.9(5.7)$ $75.7(6.1)$ $93.6(2.2)$ $-(-)$ $95.6(0.6)$ $-(-)$ $71.9(3.8)$ $92.7(1.3)$ $52.6(4.8)$ $96.8(0.7)$ $9.9(8.9)$ $72.1(15.4)$ $95.1(1.4)$ $89.5(2.7)$ $96.9(0.8)$ $33.8(15.9)$ $94.1(2.5)$ $93.1(2)$ $57.7(16.9)$ $96.4(1.1)$ $46.7(5.6)$ $51.2(4.4)$ $-(-)$ $-(-)$ $98.3(0.1)$ $94.9(0.3)$ $96.4(0.2)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

67

rope_jumping

Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence

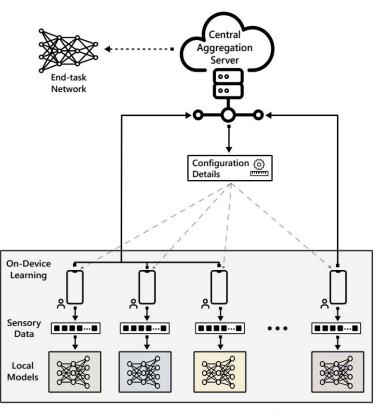
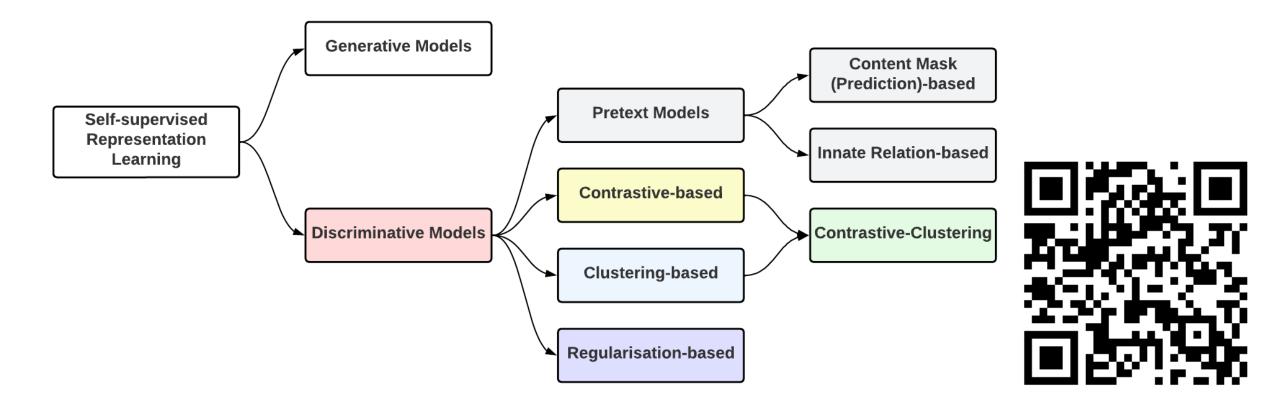



Fig. 3: Overview of federated learning framework. A central server dispatches a randomly initialized model and other training configuration details to the selected clients' devices, as depicted by dashed gray lines. The clients train local models on their private data and send the models back to the server illustrated with solid black lines. The models are aggregated to produce a unified model that is used for the end-task.

Saeed, A., Salim, F.D., Ozcelebi, T. and Lukkien, J., 2020. Federated Self-Supervised Learning of Multisensor 68 Representations for Embedded Intelligence. IEEE Internet of Things Journal, 8(2), pp.1030-1040.

Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data

Deldari, S., Xue, H., Saeed, A., He, J., Smith, D.V. and Salim, F.D., 2022. Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data.

Self-supervised Activity Representation Learning with Incremental Data: An Empirical Study

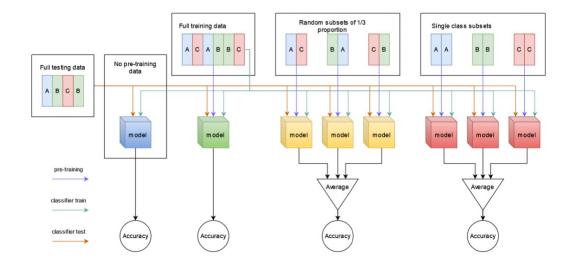


Fig. 3. Workflow of the UEA dataset investigation. Full training data were split into random subsets with size according to the number of classes in a dataset, and also single class subsets. These were used to pre-train encoder models, and compared with model trained based on no and full pre-training data.

Dataset	Reported at [24]	Reproduced	No data pre- training	Full Data pre- training	Random Subset pre-training	Single Class Subset pretrain
Articulary Word Recognition	0.99	0.99	0.98	0.99	0.98	0.95
AtrialFibrillation	0.20	0.20	0.07	0.20	0.20	0.22
BasicMotions	0.98	0.98	0.97	0.97	0.98	0.97
CharacterTrajectories	1.00	0.99	0.98	0.99	0.99	0.99
Cricket	0.97	0.99	0.99	0.99	0.97	0.96
DuckDuckGeese	0.68	0.50	0.54	0.46	0.48	0.50
EigenWorms	0.85	0.83	0.82	0.82	0.87	0.85
Epilepsy	0.96	0.96	0.95	0.96	0.97	0.96
ERing	0.87	0.85	0.89	0.85	0.85	0.83
EthanolConcentration	0.31	0.31	0.27	0.26	0.27	0.28
FaceDetection	0.50	0.51	0.51	0.51	0.51	0.51
FingerMovements	0.48	0.50	0.45	0.56	0.52	0.55
HandMovementDirection	0.34	0.31	0.27	0.36	0.31	0.29
Handwriting	0.52	0.55	0.25	0.55	0.46	0.43
Heartbeat	0.68	0.69	0.72	0.69	0.71	0.70
InsectWingbeat	0.47	0.46	0.47	0.47	0.46	0.47
JapaneseVowels	0.98	0.98	0.97	0.98	0.98	0.98
Libras	0.87	0.84	0.83	0.84	0.86	0.81
LSST	0.54	0.55	0.59	0.57	0.56	0.57
MotorImagery	0.51	0.50	0.50	0.50	0.50	0.46
NATOPS	0.93	0.91	0.93	0.92	0.94	0.91
PEMS-SF	0.68	0.65	0.65	0.66	0.66	0.68
PenDigits	0.99	0.99	0.98	0.99	0.99	0.99
PhonemeSpectra	0.23	0.23	0.21	0.23	0.24	0.24
RacketSports	0.86	0.86	0.77	0.86	0.86	0.83
SelfRegulationSCP1	0.81	0.77	0.78	0.79	0.77	0.80
SelfRegulationSCP2	0.58	0.55	0.57	0.58	0.58	0.56
SpokenArabicDigits	0.99	0.99	0.92	0.97	0.97	0.97
StandWalkJump	0.47	0.47	0.27	0.53	0.42	0.33
UWaveGestureLibrary	0.91	0.90	0.69	0.90	0.90	0.85
Average	0.70	0.69	0.66	0.70	0.69	0.68

Liu, J., Deldari, S., Xue, H., Nguyen, V. and Salim, F.D., 2023. Self-supervised Activity Representation Learning with Incremental Data: An Empirical Study. *arXiv preprint arXiv:2305.00619*, IEEE Mobile Data Management (MDM) 2023

 TABLE II

 ACCURACY ON 30 UEA DATASETS IN DIFFERENT SCENARIOS.

Contrastive Learning-based Imputation-Prediction Networks for In-hospital Mortality Risk Modeling using EHRs

Lorenzo Yuxi Liu¹, Zhenhao Zhang², Shaowen Qin³, **Flora D. Salim**⁴, Antonio Jimeno Yepes⁵

^{1,3}Flinders University, ²Northwest A&F University, ⁴University of New South Wales (UNSW), ⁵RMIT University

EHR-based risk prediction tasks

- predict the mortality risks based on historical EHR data
- used to provide early warnings when a patient's health condition deteriorates

Open Challenge

- The data is highly irregular with many missing values
- The interval between medical records vary across
 patients

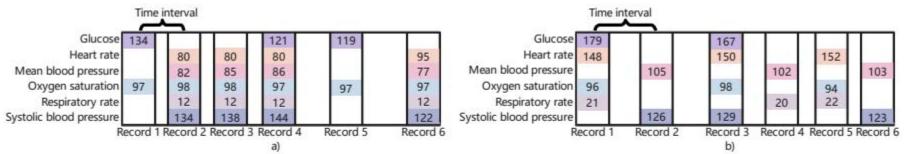


Fig. 1. Illustration of medical records of patients A and B.

The MIMIC-III Database

Existing Approaches

Imputation first then prediction

Imputation as a separate preprocessing task

Imputation Step

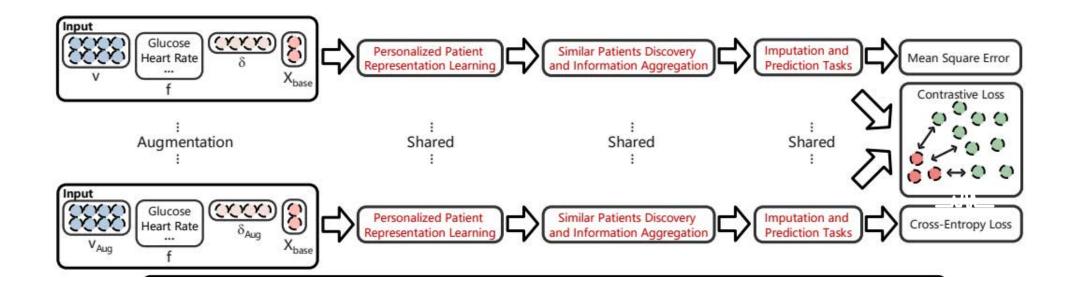
Exploit correlations of variables in patient medical records to impute missing values

Establish time-decay mechanisms to consider the effect of varying time intervals between records

Prediction Step

The complete data matrices are then used as input for downstream prediction tasks.

Our intution: Combine Imputation with Prediction with Patient Stratification & Contrastive Learning


Patient stratification refers to the method of dividing a patient population into subgroups based on specific disease characteristics and symptom severity.

Patients in the same subgroup generally had more similar health trajectories.

Proposed Method: Contrastive Learning-based Imputation-Prediction Networks for In-hospital Mortality Risk Modeling

Experiments: Datasets

MIMIC-III [1] and eICU [2] Databases

Inputs: clinical times series (e.g., heart rate) and demographics (i.e., age, sex, and ethnicity)

MIMIC-III Feature	Data Type Mis	singness (%)	eICU Feature	Data Type Mis	singness (%)
Capillary refill rate	categorical	99.78	Diastolic blood pressure	continuous	33.80
Diastolic blood pressure	continuous	30.90	Fraction inspired oxygen	continuous	98.14
Fraction inspired oxygen	continuous	94.33	Glasgow coma scale eye	categorical	83.42
Glasgow coma scale eye	categorical	82.84	Glasgow coma scale motor	categorical	83.43
Glasgow coma scale motor	categorical	81.74	Glasgow coma scale total	categorical	81.70
Glasgow coma scale total	categorical	89.16	Glasgow coma scale verbal	categorical	83.54
Glasgow coma scale verbal		81.72	Glucose	continuous	83.89
Glucose	continuous	83.04	Heart Rate	continuous	27.45
Heart Rate	continuous	27.43	Height	continuous	99.19
Height	continuous	99.77	Mean arterial pressure	continuous	96.53
Mean blood pressure	continuous	31.38	Oxygen saturation	continuous	38.12
Oxygen saturation	continuous	26.86	Respiratory rate	continuous	33.11
Respiratory rate	continuous	26.80	Systolic blood pressure	continuous	33.80
Systolic blood pressure	continuous	30.87	Temperature	continuous	76.35
Temperature	continuous	78.06	Weight	continuous	98.65
Weight	continuous	97.89	pH	continuous	97.91
pH	continuous	91.56	Age	continuous	0.00
Age	continuous	0.00	Admission diagnosis	categorical	0.00
Admission diagnosis	categorical	0.00	Ethnicity	categorical	0.00
Ethnicity	categorical	0.00	Gender	categorical	0.00
Gender	categorical	0.00			

Experiment Results

MIMIC-III/24 hours after ICU admission	n Clinical time se	ries imputation	In-hospital mor	tality prediction
Metrics	MAE	MRE	AUROC	AUPRC
GRU-D	1.3134(0.0509)	87.33%(0.0341)	0.8461(0.0051)	0.4513(0.0124)
BRITS	1.3211(0.0923)	87.92%(0.0611)	0.8432(0.0040)	0.4193(0.0144)
GRUI-GAN	1.6083(0.0043)	107.20% (0.0029)	0.8324(0.0077)	0.4209(0.0280)
$E^{2}GAN$	1.5885(0.0045)	105.86% (0.0032)	0.8377(0.0083)	0.4295(0.0137)
$E^2GAN-RF$	1.4362(0.0031)	101.09% (0.0027)	0.8430(0.0065)	0.4328(0.0101
STING	1.5018(0.0082)	102.53% (0.0047)	0.8344(0.0126)	0.4431(0.0158)
MTSIT	0.3988(0.0671)	38.44%(0.0647)	0.8029(0.0117)	0.4150(0.0165)
MIAM	1.1391(0.0001)	75.65%(0.0001)	0.8140(0.0044)	0.4162(0.0079)
Ours	0.3563(0.0375)		0.8533(0.0119)	
$Ours_{\alpha}$	0.3833(0.0389)	8.78%(0.0089)	0.8398(0.0064)	0.4555(0.0139)
Ours _β	0.4125(0.0319)	8.95%(0.0077)	0.8417(0.0059)	0.4489(0.0182
$\rm eICU/24$ hours after eICU admission	Clinical time se	ries imputation	In-hospital mor	tality prediction
Metrics	MAE	MRE	AUROC	AUPRC
GRU-D	3.9791(0.2008)	52.11%(0.0262)	0.7455(0.0107)	0.3178(0.0190
BRITS	3.6879(0.3782)	48.30%(0.0726)	0.7139(0.0101)	0.2511(0.0111
GRUI-GAN	9.1031(0.0130)	119.29% (0.0016)	0.7298(0.0094)	0.3013(0.0141)
$E^{2}GAN$	7.5746(0.0141)	99.20%(0.0018)	0.7317(0.0155)	0.2973(0.0253)
$E^{2}GAN-RF$	6.7108(0.0127)	90.38%(0.0015)	0.7402(0.0131)	0.3045(0.0227)
STING	7.1447(0.0651)	93.56%(0.0083)	0.7197(0.0154)	0.2873(0.0182
MTSIT	1.6192(0.1064)	21.20%(0.0139)	0.7215(0.0071)	0.2992(0.0115)
MIAM	1.1726(0.3103)	15.35%(0.0406)	0.7262(0.0179)	0.2659(0.0148)
Ours	0.5365(0.0612)		0.7626(0.0117)	
$Ours_{\alpha}$	0.6792(0.0716)	8.89%(0.0093)	0.7501(0.0143)	0.3325(0.0151)
$Ours_{\beta}$	0.5923(0.0514)	7.75%(0.0067)	0.7533(0.0104)	0.3303(0.0175)

Imputation and prediction results: 24 hours after ICU admission

CODE:

Experiment Results

MIMIC-III/48 hours after ICU admission	Clinical time se	eries imputation	In-hospital mor	tality prediction
Metrics	MAE	MRE	AUROC	AUPRC
GRU-D	1.4535(0.0806)	86.47%(0.0482)	0.8746(0.0026)	0.5143(0.0077)
BRITS	1.3802(0.1295)	82.21%(0.0768)	0.8564(0.0040)	0.4445(0.0189)
GRUI-GAN	1.7523(0.0030)	104.50% (0.0018)	0.8681(0.0077)	0.5123(0.0166)
$E^{2}GAN$	1.7436(0.0036)	103.98% (0.0022)	0.8705(0.0043)	0.5091(0.0120)
$E^2GAN-RF$	1.6122(0.0027)	102.34% (0.0017)	0.8736(0.0031)	0.5186(0.0095)
STING	1.6831(0.0068)	100.46% (0.0035)	0.8668(0.0123)	0.5232(0.0236)
MTSIT	0.4503(0.0465)	30.42%(0.0314)	0.8171(0.0114)	0.4308(0.0189)
MIAM	1.3158(0.0003)	78.20%(0.0002)	0.8327(0.0024)	0.4460(0.0061)
Ours	0.4396(0.0588)		0.8831(0.0149)	0.5328(0.0347
$Ours_{\alpha}$	0.7096(0.0532)	8.85%(0.0066)	0.8671(0.0093)	0.5161(0.0151)
Ours _β	0.5786(0.0429)	7.47%(0.0056)	0.8709(0.0073)	0.5114(0.0176)
eICU/48 hours after $eICU$ admission	Clinical time se	eries imputation	In-hospital mor	tality prediction
Metrics	MAE	MRE	AUROC	AUPRC
GRU-D	5.8071(0.2132)	44.53%(0.0164)	0.7767(0.0141)	0.3210(0.0182)
BRITS	5.5546(0.5497)	42.59%(0.0421)	0.7285(0.0114)	0.2510(0.0097)
GRUI-GAN	14.0750(0.0301)	107.96% (0.0021)	0.7531(0.0167)	0.2897(0.0201)
$E^{2}GAN$	12.9694(0.0195)	99.47%(0.0015)	0.7605(0.0063)	0.3014(0.0137)
$E^2GAN-RF$	11.8138(0.0161)	91.52%(0.0011)	0.7763(0.0057)	0.3101(0.0125)
STING	12.0962(0.0806)	92.79%(0.0062)	0.7453(0.0182)	0.2805(0.0190)
MTSIT	2.8150(0.2105)	21.58%(0.0161)	0.7418(0.0091)	0.3078(0.0120)
MIAM	2.1146(0.4012)	16.23%(0.0414)	0.7574(0.0127)	0.2776(0.0105)
Ours	0.9412(0.0930)	7.21%(0.0071)	0.7907(0.0123)	0.3417(0.0217
$Ours_{\alpha}$	1.1099(0.1064)	8.51%(0.0081)	0.7732(0.0100)	0.3311(0.0265)
		7.61%(0.0062)	0.7790(0.0117)	0.3335(0.0178)

Imputation and prediction results: 48 hours after ICU admission

Embedding Contextual Dynamics using Transformers

Positional Encoding in Transformers -Suitable for ST data

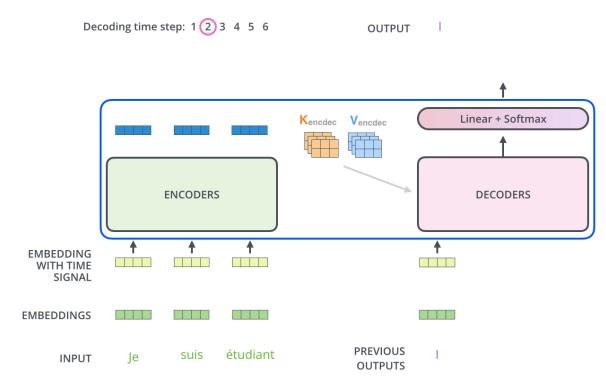
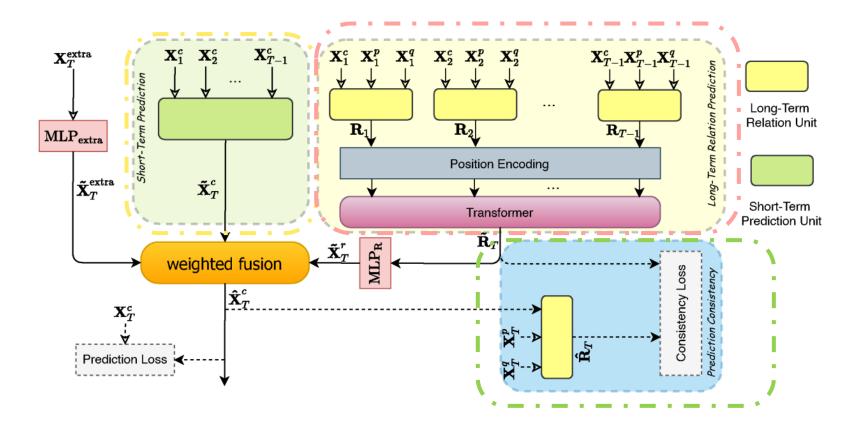
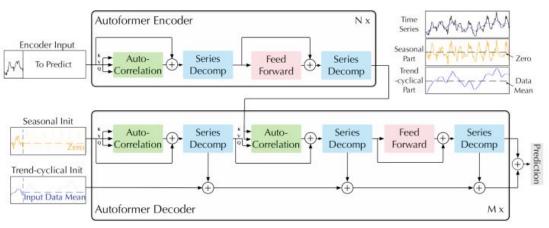



Image Credit: https://jalammar.github.io/illustrated-transformer/

Effective Urban Flow Forecasting (Traffic Flow, People Movement Flow, Check-ins)

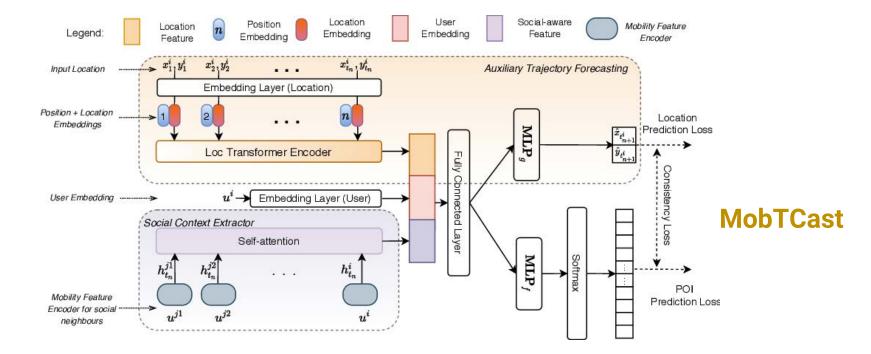
- Short-Term
 Prediction module
- Long-Term Relation
 Prediction module
- Prediction Consistency module



Other Transformer-based Models

- Transformer starts to replace RNNs in sequential forecasting
- Informer:
 - enhance the prediction capacity especially for long sequence forecasting
 - ProbSparse self-attention mechanism to efficiently replace the canonical self-attention
- Autoformer:
 - Also powerful in long sequence prediction
 - Auto-Correlation mechanism with dependencies discovery and information aggregation at the series level

Autoformer



Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of AAAI

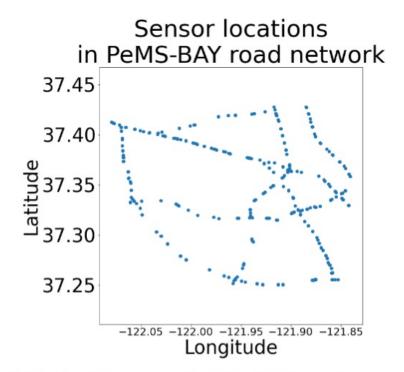
Jiehui Xu, Jianmin Wang, Mingsheng Long, et al. 2021. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems 34

Transformers-based architecture for Mobility Prediction

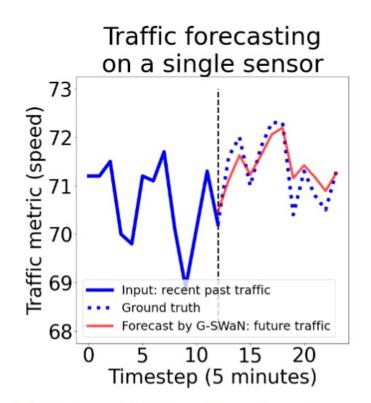
- Embed semantics and contexts e.g., groups, category etc on Transformers, the architecture would be complicated
- Need to design extra layers/modules for auxiliary information

Experiments: Results

- Dataset: Gowalla, FourSquare-NYC, FourSquare-TKY
- Metric: Top-k (k=1, 5, 10, 20)

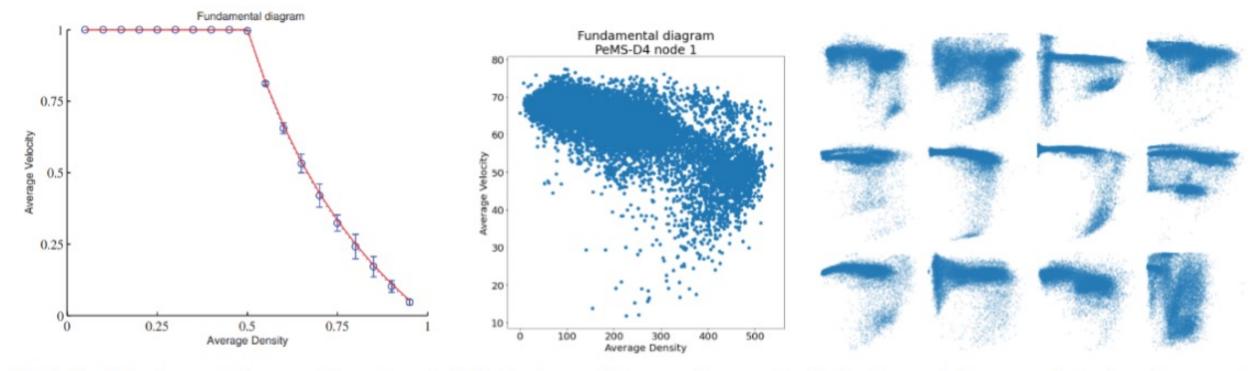

	Acc	FMFMGM	LGLMF	RNN	DeepMove	Flashback	STAN	MobTCast
a	Top-1	0.0394(0.0035)	0.0605(0.0019)	0.1334(0.0021)	0.1636(0.0019)	0.1809(0.0023)	0.1729(0.0015)	0.2051(0.0022)
vall	Top-5	0.1218(0.0050)	0.1842(0.0049)	0.3040(0.0017)	0.3704(0.0021)	0.3918(0.0018)	0.3875(0.0033)	0.4364(0.0015)
NOC	Top-10	0.1930(0.0058)	0.2793(0.0062)	0.3717(0.0025)	0.4536(0.0022)	0.4710(0.0021)	0.4816(0.0038)	0.5236(0.0022)
0	Top-20	0.2976(0.0029)	0.3912(0.0050)	0.4315(0.0026)	0.5196(0.0031)	0.5372(0.0014)	0.5534(0.0028)	0.5956(0.0020)
υ	Top-1	0.1201(0.0011)	0.0591(0.0038)	0.1960(0.0025)	0.2517(0.0021)	0.2602(0.0028)	0.2755(0.0036)	0.2804(0.0024)
Ň	Top-5	0.3103(0.0014)	0.2122(0.0069)	0.5258(0.0063)	0.5929(0.0032)	0.5992(0.0028)	0.6089(0.0033)	0.6591(0.0031)
FS-N	Top-10	0.4054(0.0023)	0.3248(0.0089)	0.6535(0.0102)	0.7013(0.0041)	0.7192(0.0054)	0.7427(0.0037)	0.7816(0.0047)
Ц	Top-20	0.4967(0.0009)	0.4520(0.0113)	0.7464(0.0058)	0.7763(0.0045)	0.8079(0.0038)	0.8398(0.0033)	0.8561(0.0041)
Y	Top-1	0.0234(0.0061)	0.0334(0.0064)	0.1775(0.0017)	0.1927(0.0027)	0.2303(0.0020)	0.2238(0.0035)	0.2550(0.0048)
Y	Top-5	0.0690(0.0128)	0.1271(0.0209)	0.4389(0.0026)	0.5023(0.0022)	0.5331(0.0027)	0.5293(0.0039)	0.5683(0.0055)
S-1	Top-10	0.1408(0.0227)	0.2007(0.0110)	0.5397(0.0047)	0.5909(0.0049)	0.6346(0.0054)	0.6245(0.0058)	0.6726(0.0042)
ц	Top-20	0.2174(0.0178)	0.3495(0.0147)	0.6211(0.0062)	0.6720(0.0065)	0.7082(0.0051)	0.7134(0.0047)	0.7489(0.0054)

Mobility data captures dynamics of human behaviour at scale



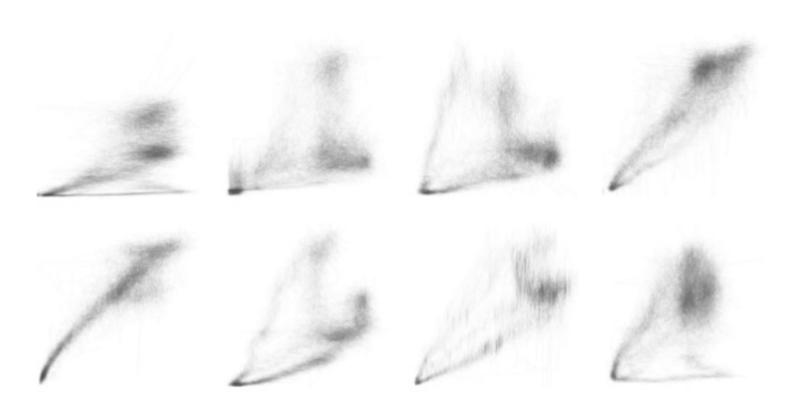

Because Every Sensor Is Unique, so Is Every Pair: Handling Dynamicity in Traffic Forecasting

(a) Locations of the sensors on the Californian highway network surrounding the bay area. Installing a network of sensors on a road infrastructure enables traffic forecasting and smarter cities.



(b) At each sensor, traffic forecasting uses the recent sensor readings (solid blue line) to predict the future traffic (red line). This forecast is made by our proposed architecture Graph Selfattenion WaveNet (G-SWaN). Our forecasts accurately predict the future traffic (dotted blue line).

Every sensor is unique



(a) Idealized fundamental diagram. Figure is copied (b) Fundamental diagram of a sensor in (c) Fundamental diagrams of 12 selected sensors in From [5]. PeMS-D4 dataset. PeMS-D4 dataset showing great diversity.

Fig. 2. Fundamental diagrams showing the dynamics between flow (density) and speed (velocity).

so is every pair

(a) Association plots of 8 random sensor pairs.

(b) Association plots of a sensor pair over three weeks. Blue lines are weekdays, red lines are weekends.

Fig. 3. Association plots of different pairs of sensor readings in PeMS-D4. The x-value of a point is the flow at one sensor, while the y-value is the flow at the other sensor. Consecutive data points are connected by a line.

G-SWaN architecture

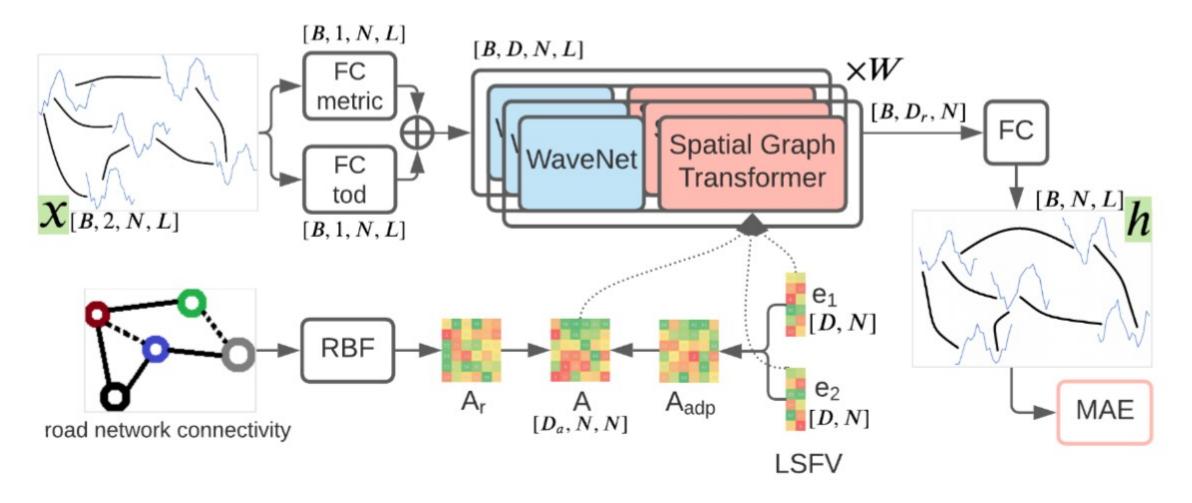


Fig. 4. System architecture of Graph Self-attention WaveNet (G-SWaN). Spatial Graph Transformers (SGT) is the novel module proposed that uses the node embeddings e_1 and e_2 to capture the unique sensor dynamics in the self-attention mechanisms. The notations are described in Table 1.

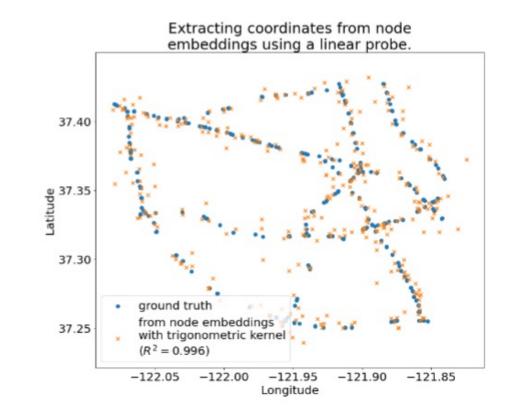
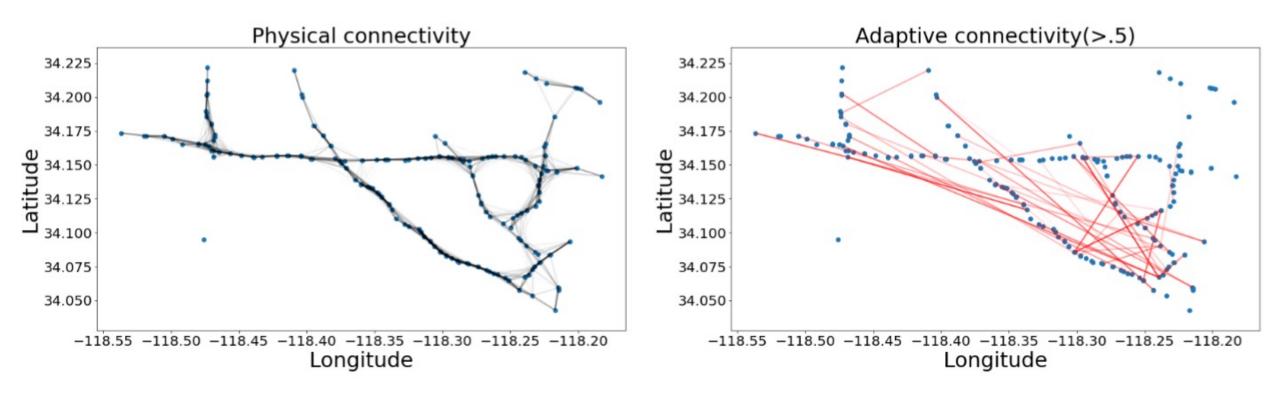

Results

Table 4. Performance comparison on flow metric using PeMS-D4 and PeMS-D8 datasets. Since all the metrics are error metrics, lower means better. **Bold** means the best performance within the metric. <u>Underline</u> means the second best performance.

(Metric: flow)]	PeMS-D	4	I	PeMS-D	8
Model	MAE	RMSE	MAPE	MAE	RMSE	MAPE
HA	38.03	59.24	27.88	34.86	52.04	24.07
VAR	24.54	38.61	17.24	19.19	29.81	13.10
GRU-ED	23.68	39.27	16.44	22.00	36.23	13.33
DSANet	22.79	35.77	16.03	17.14	26.96	11.32
DCRNN	21.22	33.44	14.17	16.82	26.36	10.92
STGCN	21.16	34.89	13.83	17.50	27.09	11.29
Graph WaveNet	28.98	42.08	30.80	20.52	30.04	16.20
ASTGCN	22.93	35.22	16.56	18.25	28.06	11.64
STSGCN	21.19	33.65	13.90	17.13	26.86	10.96
AGCRN	19.83	32.26	12.97	15.95	25.22	10.09
G-SWaN (ours)	18.48	30.51	12.59	14.05	23.00	9.08


Node embeddings encode the coordinate from the traffic dynamics alone.

(a) Recovering sensor coordinates from node embeddings using a linear probe with trigonometric kernels.

Adaptive connectivity connect distant nodes.

(b) Qualitative comparison between physical and adaptive adjacency matrix in METR-LA dataset. The line transparency is proportional to the edge weight.

What if we have limited traffic data? E.g.: New Roads, Unseen roads in training

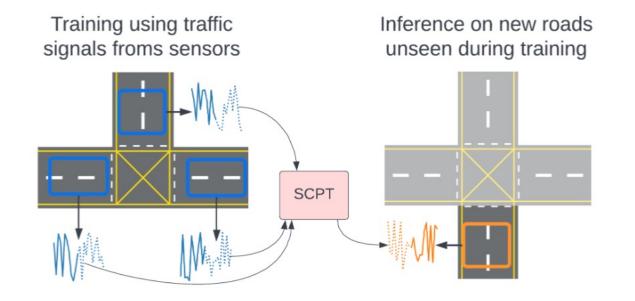
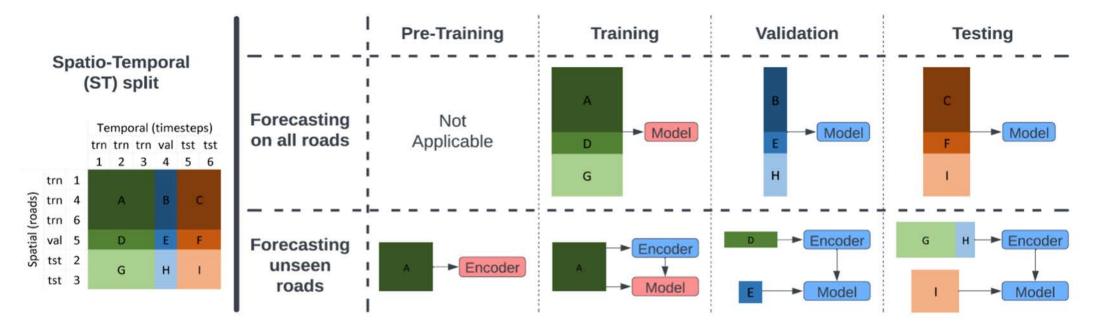


Fig. 1: A novel setup for traffic forecasting. Traffic signals (blue timeseries) are generated from sensors (blue boxes) at many different locations. Models are trained using these historical traffic data. During inference, forecasting is performed on traffic signals (orange timeseries) from new sensors (orange box) on roads which are not previously seen during training. We also introduce a novel framework called Spatial Contrastive Pre-Training (SCPT) that is effective for this new setup.


We pre-trained a spatial encoder using SCPT.

During inference time, it infers the spatial embedding of new roads from minimal data.

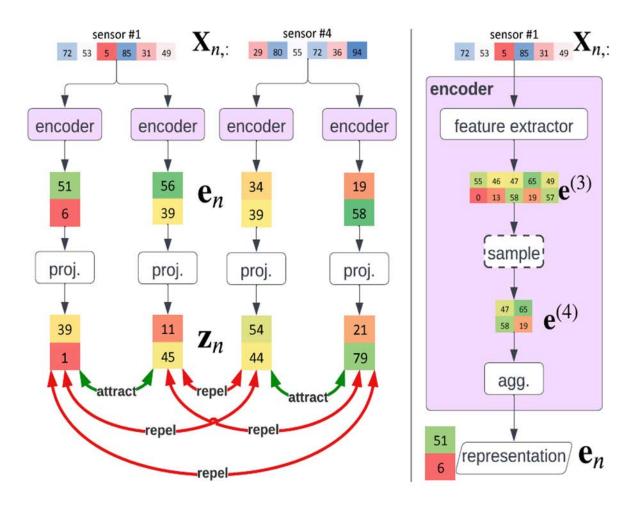
Prabowo, A., Xue, H., Shao, W., Koniusz, P., Salim, F. Traffic forecasting on new roads using spatial contrastive pre-training (SCPT). Data Mining and Knowledge Discovery (2023). https://doi.org/10.1007/s10618-023-00982-0

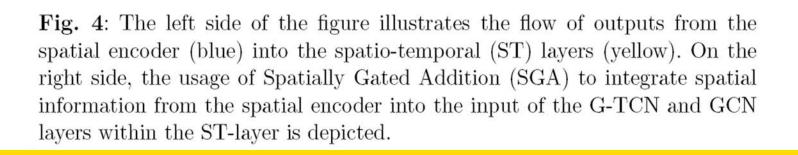
Spatio-temporal split

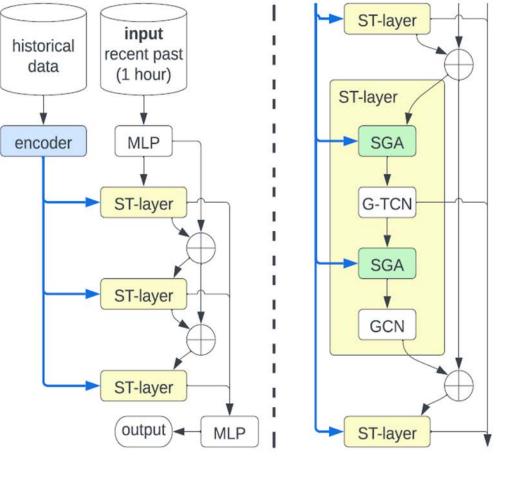
Fig. 2: The ST splitting strategy divides the dataset into nine subsets (left side), while the right side illustrates the usage of different subset combinations at different stages.

This is SimCLR like, very popular in CV.

However, the encoder is stochastic




Fig. 3: On the left, the use of contrastive loss to pre-train the spatial encoder is depicted, while on the right, the framework of the (spatial) encoder is illustrated.



We used Graph WaveNet as the backbone

But this is architecture agnostic

Only that such architecture uses node embeddings

Results

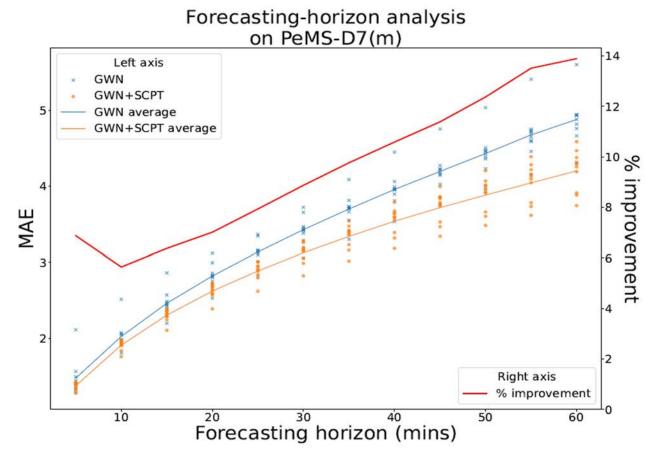


Fig. 5: Performance across forecasting horizons.

	Dataset:	METR- LA	PeMS- BAY	PeMS- D7(m)	PeMS- 11k(s)
ial	Nodes	207	325	228	11,160
Spatial	Edges	1,515	$2,\!694$	7,304	234,966
Г	Duration (timesteps)	34,272	$52,\!116$	$12,\!672$	$25,\!632$
ora	Duration (days)	121	150	61	89
ď	Time start	01-Mar-12	01-Jan- 17	01-May- 12	01-Feb-18
Temporal	Time end	30-Jun-12	31-May-17	30-Jun- 12	30-Apr-18
Г	Granularity $(mins)$	5	5	5	5
	Min	0.00	0.00	3.00	3.00
	Q1	57.13	62.10	57.50	62.60
Speed (mph)	Median	63.22	65.30	64.10	65.10
(m	Mean	58.46	62.62	58.89	63.14
p	Q3	66.50	67.50	66.70	67.80
) OE	Max	70.00	85.10	82.60	99.30
S_{I}	Standard Deviation	20.26	9.59	13.48	9.01
	Missing values	8.82%	0.00%	0.00%	0.00%
se	Entry	7,094,304	16,937,700	2,889,216	286,053,120
Size	Compressed (MB)	54	130	6	2,235

 Table 4: Detailed statistics on the real world datasets.

Most traffic dataset is artificially small.

A sub network is selected for research only.

Favorable trade-off between error and speed.

Table 3: Performance comparison on using the SCPT framework to train on a small sample (1%) of roads to scale to a large dataset PeMS-11k(s). Δ (%) denotes the percentage of error reduction.

Method:	GWN	GWN+SCPT	$\Delta(\%)$	GP-DCRNN
RMSE MAE MAPE medianMAE12 Training time	$ \begin{array}{c} 5.6345 \pm 0.7469 \\ 2.8241 \pm 0.2840 \\ 5.6345 \pm 0.7469 \\ 3.4554 \pm 0.2343 \\ \textbf{00:16:39} \end{array} $	$\begin{array}{l} \textbf{4.6741} \pm 0.2089 \\ \textbf{2.4273} \pm 0.2171 \\ \textbf{4.6741} \pm 0.2089 \\ 3.2442 \pm 0.3071 \\ 00:22:28 \end{array}$	$17\% \\ 14\% \\ 17\% \\ 6\%$	2.0200 7 days, 22:34:53
Roads seen in training (count)		111		11160
Roads seen in training $(\%)$		1%		100%

Prabowo, A., Xue, H., Shao, W., Koniusz, P., Salim, F. Traffic forecasting on new roads using spatial contrastive pre-training (SCPT). Data Mining and Knowledge Discovery (2023). https://doi.org/10.1007/s10618-023-00982-0

Traffic Forecasting on New Roads Unseen in the Training Data Using Spatial Contrastive Pre-Training (SCPT).

Link to GitHub https://github.com/cruiseresearchgroup/forecasting-on-new-roads



Arian Prabowo, Hao Xue, Wei Shao, Piotr Koniusz, and Flora D. Salim.

Parking Availability Prediction

\$1M Smarter Cities & Suburbs Project funded by Fed Govt & Mornington Peninsula Shire

Rye Township: a few days (<30 days) data in early 2020, then COVID hit

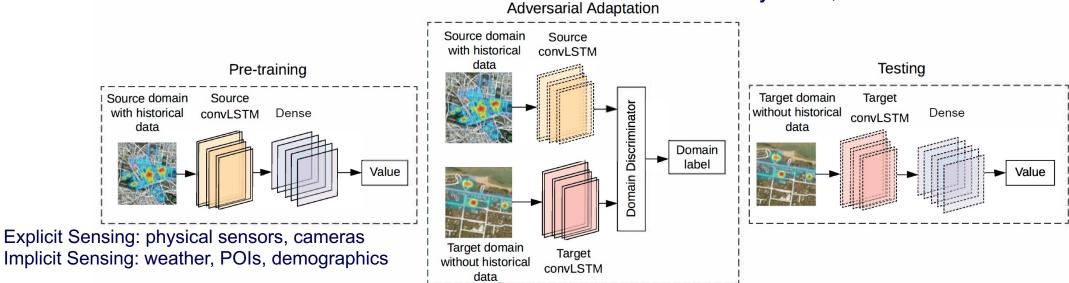
Rye Data:

- Collected by the Mornington Peninsula Shire;
- Includes 179,288 records across 527 devices in Rye.

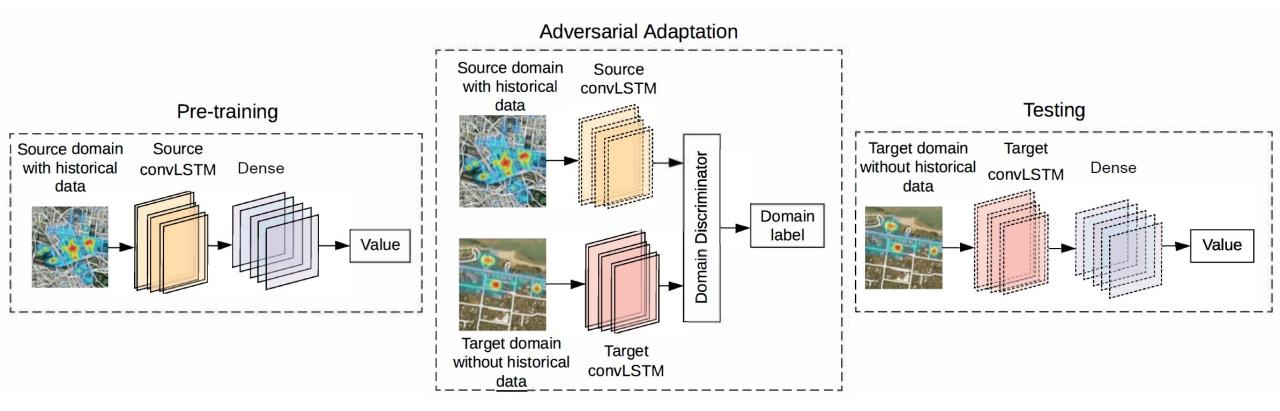
Melbourne CBD: >5 years of data

Melbourne On-street Parking Data:

- From the City of Melbourne Open Data;
- Has 35.9 million records of on-street car parking in Melbourne, containing 5044 sensor devices and 4695 parking slots.


Few-Shot Parking Availability Prediction

Melbourne CBD: >5 years of data


Rye Township: a few days data in early 2020, then COVID hit

Architecture

Refined ADDA (Adversarial Discriminative Domain Adaption)

Shao, W., Zhao, S., and Salim, F.D., 2021, March. FADACS: A Few-Shot Adversarial Domain Adaptation Architecture for Context-Aware Parking Availability Sensing. In 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom). https://arxiv.org/pdf/2007.08551.pdf ; Codes: https://github.com/cruiseresearchgroup/FADACS_Parking_Prediction

田 ※

Our results

Full parking data before domain adaptation

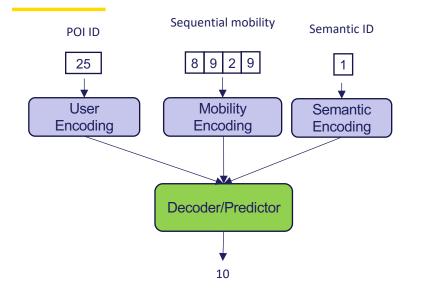
Model	MAE (5/15/30 mins)	RMSE (5/15/30 mins)
HA	0.0600	0.1219
MLP	0.0536 / 0.0895 / 0.1188	0.0988 / 0.1456 / 0.1771
LSTM	0.0419 / 0.0767 / 0.1011	0.0942 / 0.1443 / 0.1765
ConvLSTM	0.0374 / 0.0677 / 0.1005	0.0894 / 0.1402 / 0.1714

6 days parking data with domain adaptation (MelbCity to Rye)

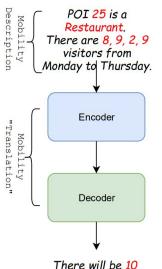
Model	MAE (5/15/30 mins)	RMSE (5/15/30 mins)
ConvLSTM	0.0607 / 0.1091 / 0.1385	0.1222 / 0.1680 / 0.2003
LSTM	0.0829 / 0.1035 / 0.1273	0.1261 / 0.1695 / 0.1998
MLP+ADDA	0.0845 / 0.1151 / 0.1774	0.1187 / 0.1616 / 0.2434
FADACS (ConvLSTM+ADDA)	0.0470 / 0.1216 / 0.1694	0.0813 / 0.1739 / 0.2229

- Our approach performed the best in general.
- ConvLSTM with parameter transfer perform better than MLP with parameter transfer.
- Adversarial learning is good at learning shared feature spaces.

temporal dependency > spatial dependency > domain adaptation

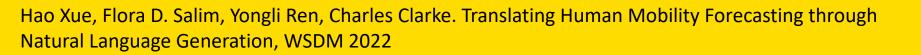


Generative AI and LLMs for mobility and multimodal sensor data


Forecasting with Natural Language Prompts

Typical Time-series Forecasting Framework:

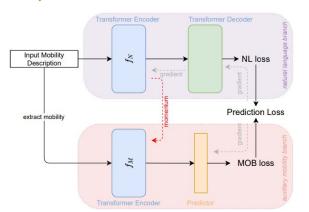
- Numbers in, number(s) out
- Difficult to design different encoders for encoding different information
- How to merge these contextual encoded features? Is concatenation optimal?



There will be 10 visitors on Friday.

Proposed Forecasting via Language Generation:

- ✓ Sentences in, sentence(s) out
- ✓ Easy to leverage existing "Translation" model architectures from NLP
- ✓ No need to worry merging various contextual information – just pass them as sentences!



Our Solution: SHIFT (mobility to text)

Template-based mobility description

	Description	Template	Example
	POI Semantic	Place-of-Interest (POI) $\{u\}$ is a/an $\{c_u\}$.	Place-of-Interest (POI) 81 is a Optical Goods Store.
Input	Observation Time		From August 26, 2020, Wednesday to August 28, 2020, Friday,
	Mobility Data	there were {[$x_{t_1}, x_{t_2}, \cdots, x_{t_{obs}}$]} people visiting POI { u } on each day.	there were 42, 32, 29 people visiting POI 81 on each day.
	Prediction Target Time	On $\{t_{obs+1}\}$,	On August 29, 2020, Saturday,
Output	Prediction Results	there will be $\{x_{t_{obs+1}}\}$ people visiting POI $\{u\}$.	there will be 21 people visiting POI 81.

Mobility-to-text Description: transform numerical mobility data and other information (e.g., semantic) into natural language sentences, to address the gap between mobility forecasting and language generation.

SHIFT Model Design:

- Natural Language Branch (NL): a branch with the sequence-to-sequence structure, which is the main branch of SHIFT to translate the input prompt to generate output sentences
- Auxiliary Mobility Branch (Mob): an auxiliary branch to strengthen the ability of SHIFT in learning mobility patterns for forecasting.

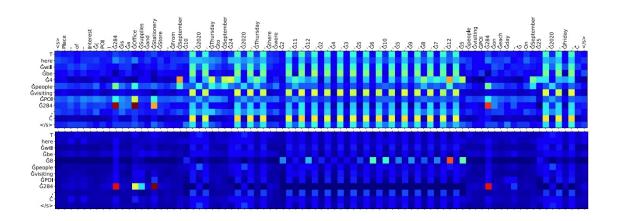
Hao Xue, Flora D. Salim, Yongli Ren, Charles Clarke. Translating Human Mobility Forecasting through Natural Language Generation, WSDM 2022

Dataset and Evaluation

	NYC	Dallas	Miami
Collection Start Date	2	2020-06-1	5
Collection End Date	2	2020-11-0	8
Average Visits per Day	17.082	21.520	22.977
Max Number of Visits	246	2746	1550
Total Number of POIs	479	1374	1007
Number of Categories	39	65	51

Real-world Human Mobility Data

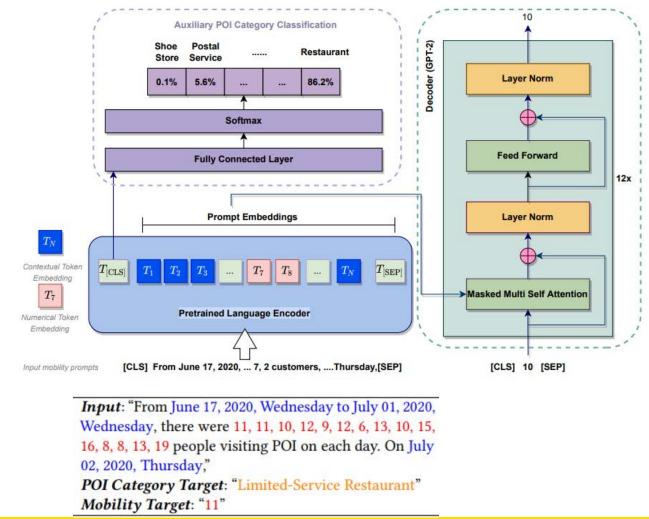
- Collected from SafeGraph Weekly Patterns
- Visitor and demographic aggregations for POIs in the US
- Three major cities selected


Hao Xue, Flora D. Salim, Yongli Ren, Charles Clarke. Translating Human Mobility Forecasting through Natural Language Generation, WSDM 2022

Dataset and Evaluation

		N	YC	Dal	las	Mia	ami	Aver	age
		RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
	LR	9.131	5.639	24.544	6.601	13.081	6.082	15.585	6.107
Numerical Time-series	Gru	7.547 (0.098)	4.550 (0.038)	23.987 (0.262)	5.400 (0.016)	12.125 (0.160)	5.413 (0.026)	14.553	5.121
	GruA	7.704 (0.107)	4.464 (0.037)	22.562 (0.433)	5.276 (0.048)	11.465 (0.417)	5.045 (0.107)	13.910	4.928
Forecasting	Transformer	6.714 (0.072)	4.279 (0.058)	18.820 (0.278)	5.166 (0.125)	10.995 (0.181)	5.130 (0.117)	12.176	4.858
	Reformer	6.626 (0.061)	4.395 (0.074)	17.392 (0.178)	5.120 (0.037)	10.578 (0.242)	5.117 (0.065)	11.532	4.877
	Informer	6.509 (0.073)	4.248 (0.065)	19.386 (0.383)	6.717 (0.453)	9.858 (0.171)	5.159 (0.103)	11.918	5.375
	S2S(GruA)	6.901 (0.212)	4.290 (0.042)	19.914 (1.259)	5.165 (0.067)	9.964 (0.632)	5.009 (0.055)	12.260	4.821
Language Seq2Seq 🛛 🚽	S2S(Transformer)	6.657 (0.070)	4.286 (0.075)	18.212 (1.422)	5.036 (0.096)	9.672 (0.605)	5.034 (0.105)	11.514	4.785
	S2S(BART)	6.645 (0.166)	4.313 (0.232)	18.978 (2.102)	4.968 (0.045)	9.724 (0.307)	4.834 (0.016)	11.782	4.705
Ours —	SHIFT	6.426 (0.067)	4.274 (0.049)	15.248 (0.367)	4.928 (0.043)	8.580 (0.159)	4.951 (0.028)	10.085	4.718

On average


- RMSE: improve 12.4% compared to the send best
- MAE: only about 0.2% worse than the best performer BART

Hao Xue, Flora D. Salim, Yongli Ren, Charles Clarke. Translating Human Mobility Forecasting through Natural Language Generation, WSDM 2022

Leveraging Large Language Models (LLM) with Mobility Prompting for Forecasting

Hao Xue, Bhanu Prakash Voutharoja, Flora D. Salim. Leveraging Language Foundation Models for Human Mobility Forecasting, SIGSPATIAL2022

Evaluation

Promot	Model	N	YC	Dal	las	Mia	mi	Aver	age
Prompt	Model	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE
	LR	9.131	5.639	24.544	6.601	13.081	6.082	15.585	6.107
N/A	GRU	7.547 ± 0.098	$4.550{\pm}0.038$	23.987 ± 0.262	5.400 ± 0.016	12.125 ± 0.160	5.413 ± 0.026	14.553	5.121
Numerical based	GRUAtt	7.704 ± 0.107	$4.464 {\pm} 0.037$	22.562 ± 0.433	5.276 ± 0.048	11.465 ± 0.417	5.045 ± 0.107	13.910	4.928
Numerical based	Transformer	6.714 ± 0.072	$4.279 {\pm} 0.058$	18.820 ± 0.278	5.166 ± 0.125	10.995 ± 0.181	5.130 ± 0.117	12.176	4.858
N/A	Transformer	6.452±0.055	4.250 ± 0.057	18.796 ± 0.338	5.337 ± 0.183	10.004 ± 0.022	5.053 ± 0.066	11.751	4.880
Numerical based	Reformer	6.645 ± 0.040	4.377 ± 0.018	17.423 ± 0.200	5.518 ± 0.066	10.411 ± 0.151	5.116 ± 0.046	11.493	5.004
With Temporal	Informer	6.279 ± 0.140	$4.134 {\pm} 0.074$	18.061 ± 0.205	5.441 ± 0.052	9.526 ± 0.098	4.823 ± 0.043	11.289	4.799
Embedding	Autoformer	6.433 ± 0.103	$4.323 {\pm} 0.108$	18.033 ± 0.896	7.021 ± 0.977	9.852 ± 0.731	$6.321 {\pm} 0.701$	11.439	5.888
٨	GRUAtt-A	6.901±0.212	4.290 ± 0.042	19.914±1.259	5.165 ± 0.067	9.964±0.632	5.009 ± 0.055	12.260	4.821
А	Transformer-A	6.657 ± 0.070	$4.286 {\pm} 0.075$	18.212 ± 1.422	5.036 ± 0.096	9.672±0.605	5.034 ± 0.105	11.514	4.785
В	GRUAtt-B	6.887±0.105	4.355 ± 0.059	19.743±0.884	5.212 ± 0.227	10.066 ± 0.520	5.124 ± 0.036	12.232	4.897
а	Transformer-B	6.648±0.190	$4.273 {\pm} 0.054$	18.189 ± 1.382	5.087 ± 0.023	9.563 ± 0.406	$4.991 {\pm} 0.164$	11.467	4.784

Encoder	Aux	N	YC	Dal	las	Mia	mi	Average		
Encouer	Aux	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	
BERT	\checkmark	6.312 ± 0.253	4.114 ± 0.038	15.304 ± 0.835	5.168 ± 0.210	10.307±1.698	4.804 ± 0.084	10.641	4.695	
DERI	×	6.291±0.010	4.144 ± 0.024	18.125 ± 1.509	5.111 ± 0.096	12.197±1.057	4.871 ± 0.060	12.204	4.708	
RoBERTa	~	6.277±0.218	4.106 ± 0.048	16.902±1.621	4.964 ± 0.062	10.744±0.793	4.926 ± 0.127	11.307	4.665	
ROBERTa	×	6.336 ± 0.259	4.117 ± 0.049	15.821±1.114	5.294 ± 0.193	11.804 ± 0.652	5.228 ± 0.172	11.320	4.879	
XLNet	\checkmark	6.586 ± 0.177	4.289 ± 0.085	16.566 ± 0.998	5.305 ± 0.094	12.683 ± 1.127	5.075 ± 0.161	11.945	4.889	
ALINE	×	6.605±0.253	4.223 ± 0.033	15.602 ± 0.285	5.202 ± 0.123	13.071 ± 2.561	5.254 ± 0.059	11.759	4.893	

Hao Xue, Bhanu Prakash Voutharoja, Flora D. Salim. Leveraging Language Foundation Models for Human Mobility Forecasting, SIGSPATIAL2022

Results: Zero-shot Setting

Training	Test	Method	RMSE	MAE						2				
		Transformer	15.867±0.202	5.220 ± 0.084			Transformer	6.656±0.044	4.341 ± 0.023			Transformer	6.733±0.753	4.447 ± 0.066
		Reformer	15.488 ± 0.169	5.401 ± 0.016			Reformer	7.514 ± 0.056	4.770 ± 0.035			Reformer	7.556 ± 0.036	4.823 ± 0.023
		Informer	16.333 ± 0.297	5.181 ± 0.067			Informer	6.429 ± 0.074	4.236 ± 0.036			Informer	6.766 ± 0.078	4.497 ± 0.075
	Miami	Autoformer	9.445 ± 0.095	5.020 ± 0.049		NYC	Autoformer	6.525 ± 0.065	4.432 ± 0.048		NYC	Autoformer	6.939 ± 0.204	4.855 ± 0.167
		XLNet	18.801 ± 2.840	7.228 ± 3.960			XLNet	7.158 ± 0.178	4.304 ± 0.015			XLNet	7.202 ± 0.371	4.702 ± 0.225
		BERT	20.272 ± 1.432	5.949 ± 0.223	Miami		BERT	6.295 ± 0.066	4.204±0.019			BERT	6.231±0.066	4.162 ± 0.017
		RoBERTa	17.834 ± 0.284	5.598 ± 0.030			RoBERTa	6.289±0.061	4.209 ± 0.032	Dallas		RoBERTa	6.291 ± 0.144	4.249 ± 0.090
NYC		Transformer	31.207 ± 0.304	5.721 ± 0.098			Transformer	21.405 ± 0.373	5.316 ± 0.033			Transformer	10.904 ± 0.129	5.995 ± 0.037
		Reformer	30.502 ± 0.313	5.897 ± 0.022			Reformer	25.205 ± 0.832	5.723 ± 0.056			Reformer	11.259 ± 0.715	5.287 ± 0.059
		Informer	31.314 ± 0.827	5.615 ± 0.077			Informer	21.688 ± 0.510	5.198 ± 0.045			Informer	9.657±0.422	5.076 ± 0.043
	Dallas	Autoformer	19.239 ± 0.564	5.327 ± 0.065		Dallas	Autoformer	21.267 ± 0.990	5.350 ± 0.037		Miami	Autoformer	10.321 ± 0.665	5.457 ± 0.128
		XLNet	21.341 ± 1.733	8.291 ± 1.008			XLNet	16.747 ± 0.150	5.149 ± 0.019			XLNet	15.801 ± 2.490	5.771 ± 0.291
		BERT	17.396±0.995	5.472 ± 0.027			BERT	15.546 ± 0.241	5.723 ± 0.224			BERT	14.014 ± 0.741	5.342 ± 0.055
		RoBERTa	17.415 ± 0.224	5.309±0.021			RoBERTa	20.920±1.245	5.202 ± 0.048			RoBERTa	16.031±0.626	5.330 ± 0.123

• train each method on one dataset and test the trained model on the test set of the rest two datasets

- Cold-start scenario
- A good way to evaluate the generalization performance
- A promising direction for future work

Hao Xue, Bhanu Prakash Voutharoja, Flora D. Salim. Leveraging Language Foundation Models for Human Mobility Forecasting, SIGSPATIAL2022

PromptCast: Overview

Dataset

- 3 forecasting scenarios
- 311,932 data instances in total

• Benchmark

- numerical-based forecasting methods: 10
- popular language generation models: 10

https://arxiv.org/abs/2210.08964

Dataset: PISA

PISA: Prompt-based tIme Series forecAsting

- City Temperature (CT): provides the daily average temperature (in Fahrenheit degrees) of multiple cities globally. 110 international cities are randomly selected to form the dataset.
- Electricity Consumption Load (ECL): includes the electricity consumption values (in Kwh) of 321 users. Filtered users with missing values and randomly selected 50 users with full records of the entire data collection period.
- SafeGraph Human Mobility Data (SG): contains the daily raw counts of visitors to POIs. Expand the data collection from 5 months in previous papers to almost 15 months and then randomly selected 324 POIs with full records.

Dataset: PISA

Table 1: PISA dataset overview and key statistics.

	СТ	ECL	SG
Objects-of-interest	110 cities	50 Users	324 POIs
Collection Period	2017/01/01 - 2020/04/30	2012/01/01 - 2014/12/31	2020/06/15 - 2021/09/05
Training Set	2017/01/01 - 2019/04/30	2012/01/01 - 2017/01/31	2020/06/15 - 2021/04/23
	850 days	762 days	313 days
	91850 instances	37350 instances	96552 instances
Validation Set	2019/05/01 - 2019/08/31	2014/02/01 - 2014/05/31	2021/04/24 - 2021/06/07
	123 days	120 days	45 days
	11880 instances	5250 instances	9720 instances
Test Set	2019/09/01 - 2020/04/30	2014/06/01 - 2014/12/31	2021/06/08 - 2021/09/05
	243 days	214 days	90 days
	25080 instances	9950 instances	24300 instances
Value Range	[-44, 104]	[2799, 24906]	[3, 383]
Average Value	58.070	11479.120	29.355

PISA Template

• Describe Data

			Template	Example
СТ	Input Prompt (Source)	Context	From $\{t_1\}$ to $\{t_{obs}\}$, the average temperature of region $\{U_m\}$ was $\{x_{t_1:t_{obs}}^m\}$ degree on each day.	From August 16, 2019, Friday to August 30, 2019, Friday, the average temperature of region 110 was 78, 81, 83, 84, 84, 82, 83, 78, 77, 77, 74, 77, 78, 73, 76 degree on each day.
		Question	What is the temperature go- ing to be on $\{t_{obs+1}\}$?	What is the temperature going to be on August 31, 2019, Saturday?
	Output Prompt (Target)	Answer	The temperature will be $\{x_{t_{obs+1}}^m\}$ degree.	The temperature will be 78 degree.
ECL	Input Prompt (Source)	Context	From $\{t_1\}$ to $\{t_{obs}\}$, client $\{U_m\}$ consumed $\{x_{t_1:t_{obs}}^m\}$ kWh of electricity on each day.	From May 16, 2014, Friday to May 30, 2014, Friday, client 50 consumed 8975, 9158, 8786, 8205, 7693, 7419, 7595, 7596, 7936, 7646, 7808, 7736, 7913, 8074, 8329 kWh of electricity on each day.
		Question	What is the consumption go- ing to be on $\{t_{obs+1}\}$?	What is the consumption going to be on May 31, 2014, Saturday?
	Output Prompt (Target)	Answer	This client will consume $\{x_{t_{obs+1}}^m\}$ kWh of electricity.	This client will consume 8337 kWh of elec- tricity.
SG	Input Prompt (Source)	Context	From $\{t_1\}$ to $\{t_{obs}\}$, there were $\{x_{t_1:t_{obs}}^m\}$ people visit- ing POI $\{U_m\}$ on each day.	From May 23, 2021, Sunday to June 06, 2021, Sunday, there were 13, 17, 13, 20, 16, 16, 17, 17, 19, 20, 12, 12, 14, 12, 13 people visiting POI 324 on each day.
		Question	How many people will visit POI $\{U_m\}$ on $\{t_{obs+1}\}$?	How many people will visit POI 324 on June 07, 2021, Monday?
	Output Prompt (Target)	Answer	There will be $\{x_{t_{obs+1}}^m\}$ visitors.	There will be 15 visitors.

https://arxiv.org/abs/2210.08964

Results

	Mathad	Temporal	C	T	E	CL	S	G
	Method	Embedding	RMSE	MAE	RMSE	MAE	RMSE	MAE
	CY	N/A	6.710	4.991	680.142	381.247	10.945	7.691
Naïve Forecasting	HA	N/A	8.089	6.321	694.658	455.288	9.198	6.221
	CLW	N/A	10.352	7.950	835.590	553.485	10.387	7.381
	AutoARIMA	N/A	6.904	5.234	644.253	387.608	9.290	6.383
Basic Numerical —	LSTM	N/A	6.511 ± 0.053	4.956 ± 0.056	598.962 ± 2.027	367.798 ± 2.088	8.994±0.032	6.107 ± 0.011
	TCN	N/A	6.397 ± 0.089	4.876 ± 0.072	589.785 ± 6.280	368.682 ± 6.077	8.389±0.029	5.927 ± 0.039
		timeF	6.790±0.072	5.238 ± 0.058	612.102 ± 25.081	400.182 ± 24.956	8.230±0.029	5.851 ± 0.023
▼	Transformer	fixed	6.603 ± 0.177	4.989 ± 0.137	557.813 ± 22.754	357.253 ± 6.875	8.274 ± 0.035	5.856 ± 0.036
		learned	6.873 ± 0.143	5.294 ± 0.108	567.307 ± 10.261	394.226 ± 8.900	8.408±0.274	5.940 ± 0.103
	110.2	timeF	6.778±0.085	5.195±0.075	597.011±15.373	383.704±21.694	8.167±0.049	5.832 ± 0.032
	Informer	fixed	6.457 ± 0.268	4.922 ± 0.209	536.921±33.375	349.331±11.916	8.151 ± 0.068	5.868 ± 0.049
Basic Numerical		learned	6.844 ± 0.106	5.307 ± 0.083	561.661 ± 19.709	394.813±13.871	8.403±0.281	5.914 ± 0.133
	11. I.	timeF	6.681±0.094	5.040 ± 0.081	608.499±9.051	384.782±9.361	8.180±0.020	5.831±0.017
	Autoformer	fixed	6.438 ± 0.064	4.909 ± 0.064	588.466 ± 9.446	375.703 ± 8.107	8.239 ± 0.053	5.898 ± 0.025
		learned	6.812 ± 0.091	5.200 ± 0.072	593.071±3.476	393.695 ± 2.385	8.392 ± 0.220	6.044 ± 0.158
		timeF	6.567±0.158	5.015±0.130	633.060±7.646	401.925±7.186	8.314±0.081	5.941 ± 0.055
	FEDformer	fixed	6.358 ± 0.050	4.841±0.029	596.240±13.169	403.764 ± 12.324	8.214 ± 0.013	5.913 ± 0.024
		learned	6.650 ± 0.049	5.108 ± 0.036	539.039 ± 2.878	387.422 ± 1.611	8.374 ± 0.051	6.049 ± 0.049

Table 3: Results of numerical-based forecasting methods on PISA-numerical.

https://arxiv.org/abs/2210.08964

https://github.com/HaoUNSW/PISA

Results

		C	T			EC	CL		SG			
1	RMSE		MAE		RMSE		MAE		RMSE		MAE	
	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
T5	6.499	0.065	4.830	0.038	527.425	10.280	353.450	2.696	8.450	0.037	5.879	0.020
Bart	6.432	0.040	4.759	0.027	527.350	10.608	355.390	2.751	8.279	0.053	5.785	0.023
Blenderbot	6.667	0.048	4.828	0.025	541.713	10.838	355.846	4.154	8.429	0.080	5.798	0.022
LED	6.376	0.036	4.730	0.025	540.924	16.542	367.276	6.742	8.277	0.072	5.787	0.036
Pegasus	6.379	0.023	4.727	0.014	537.186	11.296	361.135	4.728	8.289	0.016	5.817	0.013
ProphetNet	6.375	0.063	4.740	0.052	584.814	4.124	356.632	2.712	8.466	0.135	5.847	0.071
Bigbird	6.351	0.016	4.707	0.019	519.665	3.440	350.699	1.953	8.326	0.048	5.841	0.031
Electra	6.397	0.011	4.740	0.013	576.506	3.789	352.187	3.413	8.311	0.084	5.820	0.040
BERT	6.388	0.081	4.758	0.052	577.076	3.608	354.653	2.169	8.395	0.040	5.823	0.030
RoBERTa	6.450	0.081	4.786	0.070	659.874	23.218	448.902	19.320	8.260	0.031	5.785	0.00

Table 4: Results (RMSE and MAE) of using language models for PromptCast on PISA-prompt.

Table 5: The Missing Rate performance of language models on PISA-prompt.

	ProphetNet	Electra	BERT
Missing Rate (%) on CT	0.412 ± 0.045	0.319 ± 0.068	0.244 ± 0.151

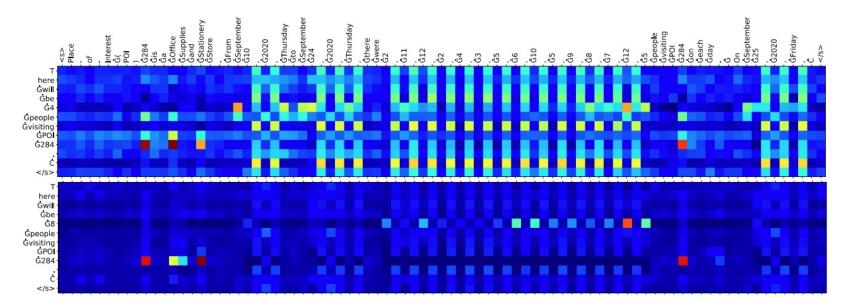
https://arxiv.org/abs/2210.08964

https://github.com/HaoUNSW/PISA

Results: Zero-shot Setting

Table 6: Results of numerical forecasting methods and language models under the zero-shot setting.

	Temporal		С	Т			E	CL		SG			
Method	Temporal Embedding	RM	SE	MA	ΔE	RM	SE	MA	E	RM	SE	M	4E
	Enibedding	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
	timeF	75.465	1.330	73.238	1.473	11866.762	40.561	11288.860	41.504	29.010	2.554	18.903	1.087
Transformer	fixed	67.964	12.021	65.991	12.311	5780.931	1432.223	5055.838	1836.453	52.461	17.611	47.150	21.680
	learned	48.691	14.586	40.968	17.008	7938.621	550.239	6982.758	647.932	28.238	1.348	18.719	1.743
	timeF	67.783	15.014	64.901	16.422	11887.368	30.596	11306.690	32.765	34.927	3.421	25.205	3.983
Informer	fixed	69.109	8.656	67.065	9.090	11180.022	296.532	10649.465	259.677	26.761	2.290	15.930	1.857
	learned	45.517	17.482	38.000	17.228	11509.084	113.513	10923.215	114.072	27.417	2.241	17.310	1.471
	timeF	52.814	5.002	39.577	5.842	694.693	2.715	455.658	2.188	38.710	11.207	30.857	9.751
Autoformer	fixed	47.691	5.329	34.531	2.996	674.641	1.845	440.564	1.678	36.801	3.523	28.637	1.927
	learned	83.349	9.332	59.951	7.855	693.810	0.719	454.691	0.644	56.787	3.050	40.890	2.004
	timeF	63.851	4.729	46.117	4.608	693.017	2.127	454.284	1.983	50.252	8.780	40.091	8.115
FEDformer	fixed	77.699	3.711	54.176	4.005	655.196	3.142	424.823	2.603	64.622	5.056	45.391	2.996
	learned	239.426	24.961	146.535	21.858	694.019	0.832	454.866	0.842	108.169	8.851	85.243	6.055
					Ze	ero-Shot Pro	mptCast						
Bart		7.379	0.086	5.501	0.067	660.082	16.205	493.035	18.166	8.592	0.075	5.961	0.038
Pegasus	N/A	6.918	0.022	5.178	0.031	643.483	16.536	446.876	5.822	9.293	0.160	6.116	0.041
Bigbird		7.070	0.074	5.248	0.044	665.191	55.176	417.634	4.815	9.439	0.020	6.289	0.027



https://arxiv.org/abs/2210.08964

https://github.com/HaoUNSW/PISA

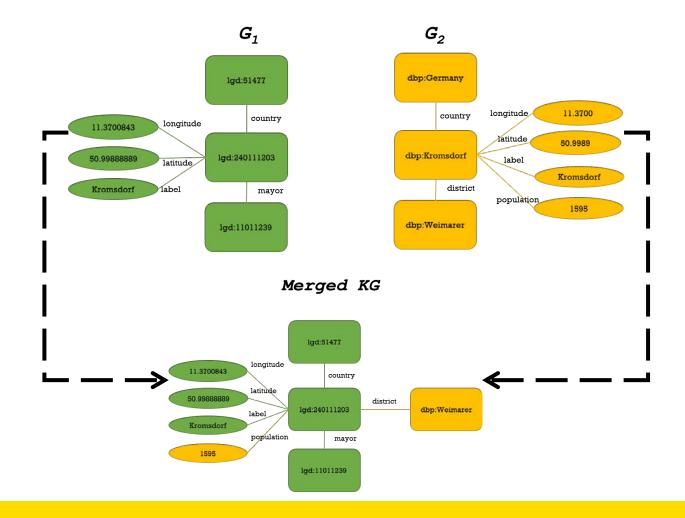
Why it works

- Intra-relation (between numerical values) and inter-relation (numerical values and auxiliary information) modeled simultaneously
- Limitation: Still need further investigations

Example: attentions in SHIFT model

https://arxiv.org/abs/2210.08964

i-Align: An Interpretable Knowledge Graph Alignment Model


Bayu Distiawan Trisedya¹, **Flora D. Salim**², Jeffrey Chan¹, Damiano Spina¹, Falk Scholer¹, Mark Sanderson¹

¹RMIT University, Melbourne, Australia ²University of New South Wales (**UNSW**), Sydney, Australia

ARC Centre of Excellence for Automated Decision Making and Society (ADM+S)

KG Alignment: Example

Motivations

KGs are incomplete \rightarrow the need for enrichment methods

- Manual curation
- Extract new information from text

→ KG alignment: merge two or more KGs to have a more comprehensive KG

Many open KGs are constructed for different purposes

- They have different level of details per entity
- Combines them to have a more complete KG

Goals and Challenges

Goals:

- Maintain high alignment performance
- Enable interpretability of alignment results

Challenge-1: The interpretability of the embeddingbased KG alignment models is non-trivial

Goals and Challenges

Challenge-2: applying a post-hoc (model-agnostic) explainer is suboptimal

 Existing GNN post-hoc explainers, such as GNNExplainer and PGExplainer, can only extract the most influential neighbors but not the most influential attributes

Challenge-3: Scalability

 The best-performing embedding-based model is built on top GNN → struggling on processing large KG

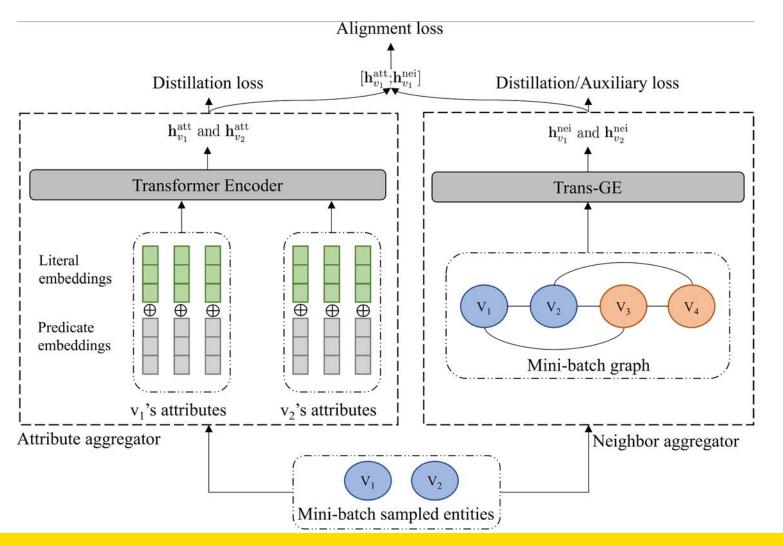
Goals and Challenges

Goal:

propose an <u>accurate KG alignment model</u> for aligning <u>large KGs</u> that can <u>highlight top-n influential neighbours and attributes</u>

 \rightarrow i-Align

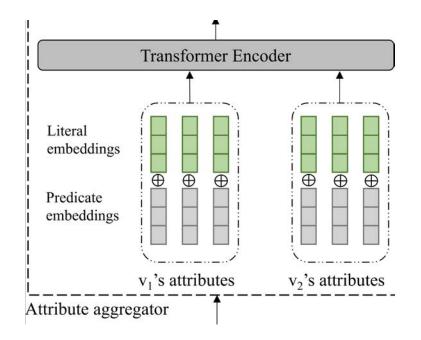
Contributions


1.An interpretable KG alignment model is proposed, where an explanation of the alignment prediction can be automatically derived..

2.Along with the proposed model, a novel Transformer-based graph encoder is proposed for controllable information aggregation.

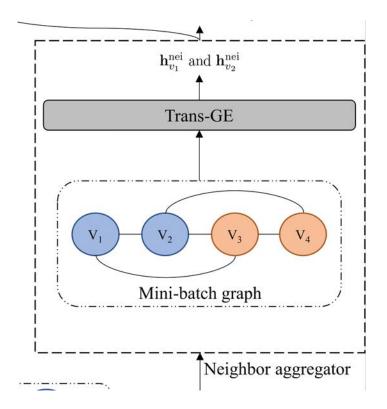
3.Extensive experiments and analyses are conducted to show the model's effectiveness in predicting the alignments and providing explanations.

Proposed *i-Align* Model



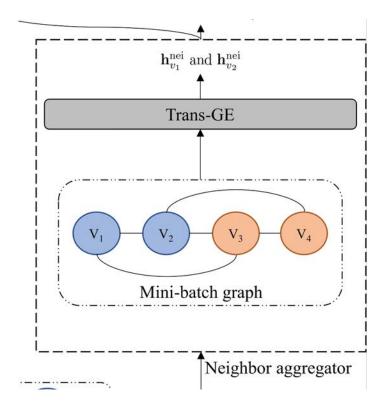
Attribute Aggregator

- Compute the attribute embeddings given the attribute triples in a mini-batch.
- Combines attribute key & value using GRU
- Compute attribute importance using Transformer Encoder → used for interpretability



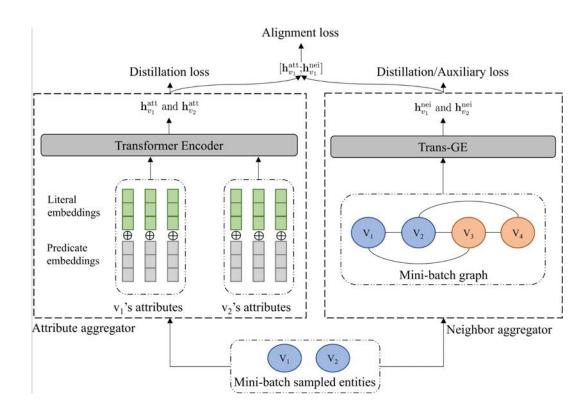
Neighbor Aggregator

- Compute the neighbourhood embeddings given the attribute triples in a mini-batch.
- Components:
 - Trans-GE → return neighbour importance for interpretability
 - Historical Embeddings



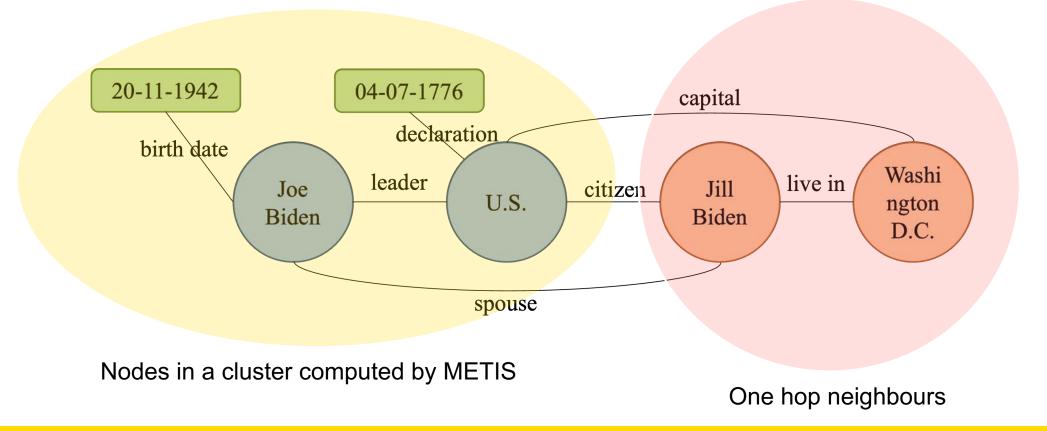
Trans-GE

- Edge-gated attention for capturing the structural information of a sub-graph.
- A Transformer encoder applied on entities' neighbours.



Historical Embeddings

- To approximate the full computational graph of a KG in a mini-batch
- Borrows the idea from GNNAutoScale
 - Split graph using a graph clustering algorithm, e.g., METIS.
 - The mini-batch takes the nodes in the cluster and their first hop neighbours.
 - Uses a linear transformation learned to approximate the current node embeddings based on the embeddings in the previous state → Learned by distillation loss



Proposed Method

Mini-batch illustration:

Dataset:

- DWY-NB → a KG alignment benchmark dataset containing two pairs of KGs
 - DBpedia Wikidata (DW-NB) \rightarrow 50, 000 aligned entities
 - DBpedia YAGO (DY-NB) \rightarrow 15, 000 aligned entities
 - 30% of the aligned entities are used as seed alignment
- DBP-LGD, contain 10,000 aligned entities between DBpedia and LinkGeoData.
- DBP-GEO, contain 10,000 aligned entities between DBpedia and Geonames.

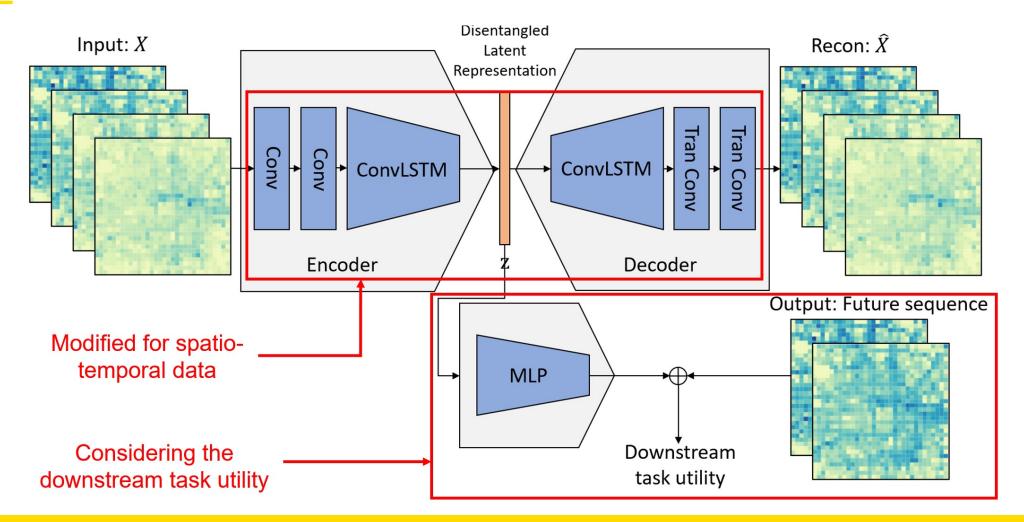
Comparisons of KG alignment models performance

Madal	DW	/-NB	DY	-NB	LGD	-DBP	GEO	-DBP
Model	<u>Hits@1</u>	<u>Hits@10</u>	<u>Hits@1</u>	<u>Hits@10</u>	<u>Hits@1</u>	<u>Hits@10</u>	<u>Hits@1</u>	<u>Hits@10</u>
MTransE	7.88	25.75	0.08	0.68	33.59	35.76	33.14	34.75
JAPE	12.57	19.96	1.4	3.27	33.47	34.42	33.35	34.27
GCN-Align	24.76	48.52	24.36	53.43	48.57	52.74	46.12	51.32
MRAEA	81.54	85.97	73.71	78.52	78.98	83.13	72.11	75.32
NMN	84.03	88.21	75.87	80.54	78.88	82.35	75.87	80.18
MultiKE	84.06	90.05	84.97	90.84	83.12	90.55	79.33	85.22
AtrrE	87.98	95.8	90.44	94.23	84.17	92.05	86.91	92.32
Proposed	88.35	94.22	91.21	93.44	87.21	94.22	88.87	93.87

Manual Evaluation of Alignment Explanation

- Randomly take 50 correct alignments and 50 incorrect alignments
- Given an alignment result, annotators are asked to predict whether it is correct and their confidence level.

Model	Correct Prediction		Incorrect Prediction	
IVIOUEI	Prec	Conf	Prec	Conf
GCN-Align + GNNExplainer	0.39	0.47	0.80	0.75
i-Align (Neighbors only)	0.68	0.71	0.87	0.81
i-Align	0.95	0.90	0.93	0.93


Example of Attributes/Neighbors Explanation of A Wrong Alignment Prediction

- i-Align provides better explanations in terms of the top 5 aligned attributes and neighbours
- Expert can easily detect the wrong alignments

	i-Align prediction		GCN-Align + GNNExplainer prediction	
Entities	Carl Ferdinand Cori (Q78501)	Ferdinand I of Bulgaria (Q151667)	Carl Ferdinand Cori (Q78501)	Tomáš Cihlář (Q88483170)
	(given_name, Ferdinand)	(given_name, Ferdinand)		
Top-5 Attributes ((date_of_death, 1984-10-20)	(date_of_death, 1948-09-10)		
	(married, 1920)	(position_end_time, 1918)	N/A	N/A
	(last_name, Cori)	(last_name, Bulgaria)		
	(date_of_birth, 1896-12-05)	(date_of_birth, 1861-02-26)		
Top-5 Neighbors ((occupation, biochemist)	(occupation, entomologist)	(occupation, biochemist)	(occupation, biochemist)
	(citizenship, Czechoslovakia)	(native_language, German)	(language, English)	(employer, Gilead Sciences)
	(place_of_death, Cambridge) (place_of_birth, Vienna)		(gender, male)	(country_of_citizenship, Czech Republic)
	(member_of, Royal Society)	(place_of_burial, St. Augustine's Church)	(citizenship, Czechoslovakia)	(language, English)
	(place_of_birth, Prague)	(member_of, Academy of Sciences)	(employer, Harvard University)	(gender, male)

Explainability of Generative Al

Zhao, S., Shao, W., Chan, J., & Salim, F. D. (2022). Measuring disentangled generative spatio-temporal representation. In *Proceedings of the 2022 SIAM International Conference on Data Mining (SDM)* (pp. 522-530).

Thank you

Professor Flora Salim

UNSW Computer Science and Engineering Cisco Chair of Digital Transport Deputy Director of Engagement, UNSW AI Institute Chief Investigator, ARC Centre of Excellence of Automated Decision Making and Society

UNSW Sydney

Email: <u>flora.salim@unsw.edu.au</u> Twitter: @flosalim

